Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

SRAM Design for Wireless Sensor Networks [electronic resource] : Energy Efficient and Variability Resilient Techniques / by Vibhu Sharma, Francky Catthoor, Wim Dehaene.

By: Contributor(s): Material type: TextTextSeries: Analog Circuits and Signal ProcessingPublisher: New York, NY : Springer New York : Imprint: Springer, 2013Description: XII, 172 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781461440390
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.3815 23
LOC classification:
  • TK7888.4
Online resources:
Contents:
Introduction -- SRAM Bit Cell Optimization -- Adaptive Voltage Optimization Techniques: Low Voltage SRAM Operation -- Circuit Techniques to Assist SRAM Cell: Local Assist Circuitry -- SRAM Energy Reduction Techniques -- Variation Tolerant Low Power Sense Amplifiers -- Prototypes -- Conclusions.
In: Springer eBooksSummary: This book features various, ultra low energy, variability resilient SRAM circuit design techniques for wireless sensor network applications. Conventional SRAM design targets area efficiency and high performance at the increased cost of energy consumption, making it unsuitable for computation-intensive sensor node applications.  This book, therefore, guides the reader through different techniques at the circuit level for reducing   energy consumption and increasing the variability resilience. It includes a detailed review of the most efficient circuit design techniques and trade-offs, introduces new memory architecture techniques, sense amplifier circuits and voltage optimization methods for reducing the impact of variability for the advanced technology nodes.    Discusses fundamentals of energy reduction for SRAM circuits and applies them to energy limitation challenges associated with wireless sensor  nodes; Explains impact of variability resilience in reducing the energy consumption; Describes various memory architectures and provides detailed overview of different types of SRAM cells; Includes sense amplifier design techniques for solving energy-offset tradeoff.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- SRAM Bit Cell Optimization -- Adaptive Voltage Optimization Techniques: Low Voltage SRAM Operation -- Circuit Techniques to Assist SRAM Cell: Local Assist Circuitry -- SRAM Energy Reduction Techniques -- Variation Tolerant Low Power Sense Amplifiers -- Prototypes -- Conclusions.

This book features various, ultra low energy, variability resilient SRAM circuit design techniques for wireless sensor network applications. Conventional SRAM design targets area efficiency and high performance at the increased cost of energy consumption, making it unsuitable for computation-intensive sensor node applications.  This book, therefore, guides the reader through different techniques at the circuit level for reducing   energy consumption and increasing the variability resilience. It includes a detailed review of the most efficient circuit design techniques and trade-offs, introduces new memory architecture techniques, sense amplifier circuits and voltage optimization methods for reducing the impact of variability for the advanced technology nodes.    Discusses fundamentals of energy reduction for SRAM circuits and applies them to energy limitation challenges associated with wireless sensor  nodes; Explains impact of variability resilience in reducing the energy consumption; Describes various memory architectures and provides detailed overview of different types of SRAM cells; Includes sense amplifier design techniques for solving energy-offset tradeoff.

There are no comments on this title.

to post a comment.