Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Advanced aircraft design : conceptual design, analysis, and optimization of subsonic civil airplanes / Egbert Torenbeek.

By: Material type: TextTextSeries: Aerospace series (Chichester, England)Publisher: Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., 2013Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118568095 ( ePub)
  • 1118568095 ( ePub)
  • 9781118568071 (MobiPocket)
  • 1118568079 (MobiPocket)
  • 9781118568088 (Adobe PDF)
  • 1118568087 (Adobe PDF)
  • 9781118568101 (electronic bk.)
  • 1118568109 (electronic bk.)
Subject(s): Genre/Form: Additional physical formats: Print version:: Advanced aircraft designDDC classification:
  • 629.133/34 23
LOC classification:
  • TL671.2
Online resources:
Contents:
Machine generated contents note: 1.Design of the Well-Tempered Aircraft -- 1.1.How Aircraft Design Developed -- 1.1.1.Evolution of Jetliners and Executive Aircraft -- 1.1.2.A Framework for Advanced Design -- 1.1.3.Analytical Design Optimization -- 1.1.4.Computational Design Environment -- 1.2.Concept Finding -- 1.2.1.Advanced Design -- 1.2.2.Pre-conceptual Studies -- 1.3.Product Development -- 1.3.1.Concept Definition -- 1.3.2.Preliminary Design -- 1.3.3.Detail Design -- 1.4.Baseline Design in a Nutshell -- 1.4.1.Baseline Sizing -- 1.4.2.Power Plant -- 1.4.3.Weight and Balance -- 1.4.4.Structure -- 1.4.5.Performance Analysis -- 1.4.6.Closing the Loop -- 1.5.Automated Design Synthesis -- 1.5.1.Computational Systems Requirements -- 1.5.2.Examples -- 1.5.3.Parametric Surveys -- 1.6.Technology Assessment -- 1.7.Structure of the Optimization Problem -- 1.7.1.Analysis Versus Synthesis -- 1.7.2.Problem Classification -- Bibliography -- 2.Early Conceptual Design -- 2.1.Scenario and Requirements -- 2.1.1.What Drives a Design? -- 2.1.2.Civil Airplane Categories -- 2.1.3.Top Level Requirements -- 2.2.Weight Terminology and Prediction -- 2.2.1.Method Classification -- 2.2.2.Basic Weight Components -- 2.2.3.Weight Limits -- 2.2.4.Transport Capability -- 2.3.The Unity Equation -- 2.3.1.Mission Fuel -- 2.3.2.Empty Weight -- 2.3.3.Design Weights -- 2.4.Range Parameter -- 2.4.1.Aerodynamic Efficiency -- 2.4.2.Specific Fuel Consumption and Overall Efficiency -- 2.4.3.Best Cruise Speed -- 2.5.Environmental Issues -- 2.5.1.Energy and Payload Fuel Efficiency -- 2.5.2.`Greener by Design' -- Bibliography -- 3.Propulsion and Engine Technology -- 3.1.Propulsion Leading the Way -- 3.2.Basic Concepts of Jet Propulsion -- 3.2.1.Turbojet Thrust -- 3.2.2.Turbofan Thrust -- 3.2.3.Specific Fuel Consumption -- 3.2.4.Overall Efficiency -- 3.2.5.Thermal and Propulsive Efficiency -- 3.2.6.Generalized Performance -- 3.2.7.Mach Number and Altitude Effects -- 3.3.Turboprop Engines -- 3.3.1.Power and Specific Fuel Consumption -- 3.3.2.Generalized Performance -- 3.3.3.High Speed Propellers -- 3.4.Turbofan Engine Layout -- 3.4.1.Bypass Ratio Trends -- 3.4.2.Rise and Fall of the Propfan -- 3.4.3.Rebirth of the Open Rotor? -- 3.5.Power Plant Selection -- 3.5.1.Power Plant Location -- 3.5.2.Alternative Fuels -- 3.5.3.Aircraft Noise -- Bibliography -- 4.Aerodynamic Drag and Its Reduction -- 4.1.Basic Concepts -- 4.1.1.Lift, Drag and Aerodynamic Efficiency -- 4.1.2.Drag Breakdown and Definitions -- 4.2.Decomposition Schemes and Terminology -- 4.2.1.Pressure and Friction Drag -- 4.2.2.Viscous Drag -- 4.2.3.Vortex Drag -- 4.2.4.Wave Drag -- 4.3.Subsonic Parasite and Induced Drag -- 4.3.1.Parasite Drag -- 4.3.2.Monoplane Induced Drag -- 4.3.3.Biplane Induced Drag -- 4.3.4.Multiplane and Boxplane Induced Drag -- 4.4.Drag Polar Representations -- 4.4.1.Two-term Approximation -- 4.4.2.Three-term Approximation -- 4.4.3.Reynolds Number Effects -- 4.4.4.Compressibility Correction -- 4.5.Drag Prediction -- 4.5.1.Interference Drag -- 4.5.2.Roughness and Excrescences -- 4.5.3.Corrections Dependent on Operation -- 4.5.4.Estimation of Maximum Subsonic L/D -- 4.5.5.Low-Speed Configuration -- 4.6.Viscous Drag Reduction -- 4.6.1.Wetted Area -- 4.6.2.Turbulent Friction Drag -- 4.6.3.Natural Laminar Flow -- 4.6.4.Laminar Flow Control -- 4.6.5.Hybrid Laminar Flow Control -- 4.6.6.Gains, Challenges and Barriers of LFC -- 4.7.Induced Drag Reduction -- 4.7.1.Wing Span -- 4.7.2.Spanwise Camber -- 4.7.3.Non-planar Wing Systems -- Bibliography -- 5.From Tube and Wing to Flying Wing -- 5.1.The Case for Flying Wings -- 5.1.1.Northrop's All-Wing Aircraft -- 5.1.2.Flying Wing Controversy -- 5.1.3.Whither All-Wing Airliners? -- 5.1.4.Fundamental Issues -- 5.2.Allocation of Useful Volume -- 5.2.1.Integration of the Useful Load -- 5.2.2.Study Ground Rules -- 5.2.3.Volume Ratio -- 5.2.4.Zero-Lift Drag -- 5.2.5.Generalized Aerodynamic Efficiency -- 5.2.6.Partial Optima -- 5.3.Survey of Aerodynamic Efficiency -- 5.3.1.Altitude Variation -- 5.3.2.Aspect Ratio and Span -- 5.3.3.Engine-Airframe Matching -- 5.4.Survey of the Parameter ML/D -- 5.4.1.Optimum Flight Conditions -- 5.4.2.The Drag Parameter -- 5.5.Integrated Configurations Compared -- 5.5.1.Conventional Baseline -- 5.5.2.Is a Wing Alone Sufficient? -- 5.5.3.Blended Wing Body -- 5.5.4.Hybrid Flying Wing -- 5.5.5.Span Loader -- 5.6.Flying Wing Design -- 5.6.1.Hang-Ups or Showstopper? -- 5.6.2.Structural Design and Weight -- 5.6.3.The Flying Wing: Will It Fly? -- Bibliography -- 6.Clean Sheet Design -- 6.1.Dominant and Radical Configurations -- 6.1.1.Established Configurations -- 6.1.2.New Paradigms -- 6.2.Morphology of Shapes -- 6.2.1.Classification -- 6.2.2.Lifting Systems -- 6.2.3.Plan View Classification -- 6.2.4.Strut-Braced Wings -- 6.2.5.Propulsion and Concept Integration -- 6.3.Wing and Tail Configurations -- 6.3.1.Aerodynamic Limits -- 6.3.2.The Balanced Design -- 6.3.3.Evaluation -- 6.3.4.Relaxed Inherent Stability -- 6.4.Aircraft Featuring a Foreplane -- 6.4.1.Canard Configuration -- 6.4.2.Three-Surface Aircraft -- 6.5.Non-Planar Lifting Systems -- 6.5.1.Transonic Boxplane -- 6.5.2.C-Wing -- 6.6.Joined Wing Aircraft -- 6.6.1.Structural Principles and Weight -- 6.6.2.Aerodynamic Aspects -- 6.6.3.Stability and Control -- 6.6.4.Design Integration -- 6.7.Twin-Fuselage Aircraft -- 6.7.1.Design Integration -- 6.8.Hydrogen-Fuelled Commercial Transports -- 6.8.1.Properties of LH2 -- 6.8.2.Fuel System -- 6.8.3.Handling Safety, Economics and Logistics -- 6.9.Promising Concepts -- Bibliography -- 7.Aircraft Design Optimization -- 7.1.The Perfect Design: An Illusion? -- 7.2.Elements of Optimization -- 7.2.1.Design Parameters -- 7.2.2.Optimal Control and Discrete-Variable Optimization -- 7.2.3.Basic Terminology -- 7.2.4.Single-Objective Optimization -- 7.2.5.Unconstrained Optimizer -- 7.2.6.Constrained Optimizer -- 7.3.Analytical or Numerical Optimization? -- 7.3.1.Analytical Approach -- 7.3.2.Multivariate Optimization -- 7.3.3.Unconstrained Optimization -- 7.3.4.Constrained Optimization -- 7.3.5.Response Surface Approximation -- 7.3.6.Global Models -- 7.4.Large Optimization Problems -- 7.4.1.Concept Sizing and Evaluation -- 7.4.2.Multidisciplinary Optimization -- 7.4.3.System Decomposition -- 7.4.4.Multilevel Optimization -- 7.4.5.Multi-Objective Optimization -- 7.5.Practical Optimization in Conceptual Design -- 7.5.1.Arguments of the Sceptic -- 7.5.2.Problem Structure -- 7.5.3.Selecting Selection Variables -- 7.5.4.Design Sensitivity -- 7.5.5.The Objective Function -- Bibliography -- 8.Theory of Optimum Weight -- 8.1.Weight Engineering: Core of Aircraft Design -- 8.1.1.Prediction Methods -- 8.1.2.Use of Statistics -- 8.2.Design Sensitivity -- 8.2.1.Problem Structure -- 8.2.2.Selection Variables -- 8.3.Jet Transport Empty Weight -- 8.3.1.Weight Breakdown -- 8.3.2.Wing Structure (Item 10) -- 8.3.3.Fuselage Structure (Item 11) -- 8.3.4.Empennage Structure (Items 12 and 13) -- 8.3.5.Landing Gear Structure (Item 14) -- 8.3.6.Power Plant and Engine Pylons (Items 2 and 15) -- 8.3.7.Systems, Furnishings and Operational Items (Items 3, 4 and 5) -- 8.3.8.Operating Empty Weight: Example -- 8.4.Design Sensitivity of Airframe Drag -- 8.4.1.Drag Decomposition -- 8.4.2.Aerodynamic Efficiency -- 8.5.Thrust, Power Plant and Fuel Weight -- 8.5.1.Installed Thrust and Power Plant Weight -- 8.5.2.Mission Fuel -- 8.5.3.Propulsion Weight Penalty -- 8.5.4.Wing and Propulsion Weight Fraction -- 8.5.5.Optimum Weight Fractions Compared -- 8.6.Take-Off Weight, Thrust and Fuel Efficiency -- 8.6.1.Maximum Take-Off Weight -- 8.6.2.Installed Thrust and Fuel Energy Efficiency -- 8.6.3.Unconstrained Optima Compared -- 8.6.4.Range for Given MTOW -- 8.6.5.Extended Range Version -- 8.7.Summary and Reflection -- 8.7.1.Which Figure of Merit? -- 8.7.2.Conclusion -- 8.7.3.Accuracy -- Bibliography -- 9.Matching Engines and Airframe -- 9.1.Requirements and Constraints -- 9.2.Cruise-Sized Engines --
9.2.1.Installed Take-Off Thrust -- 9.2.2.The Thumbprint -- 9.3.Low Speed Requirements -- 9.3.1.Stalling Speed -- 9.3.2.Take-Off Climb -- 9.3.3.Approach and Landing Climb -- 9.3.4.Second Segment Climb Gradient -- 9.4.Schematic Take-Off Analysis -- 9.4.1.Definitions of Take-Off Field Length -- 9.4.2.Take-Off Run -- 9.4.3.Airborne Distance -- 9.4.4.Take-Off Distance -- 9.4.5.Generalized Thrust and Span Loading Constraint -- 9.4.6.Minimum Thrust for Given TOFL -- 9.5.Approach and Landing -- 9.5.1.Landing Distance Analysis -- 9.5.2.Approach Speed and Wing Loading -- 9.6.Engine Selection and Installation -- 9.6.1.Identifying the Best Match -- 9.6.2.Initial Engine Assessment -- 9.6.3.Engine Selection -- Bibliography -- 10.Elements of Aerodynamic Wing Design -- 10.1.Introduction -- 10.1.1.Problem Structure -- 10.1.2.Relation to Engine Selection -- 10.2.Planform Geometry -- 10.2.1.Wing Area and Design Lift Coefficient -- 10.2.2.Span and Aspect Ratio -- 10.3.Design Sensitivity Information -- 10.3.1.Aerodynamic Efficiency -- 10.3.2.Propulsion Weight Contribution -- 10.3.3.Wing and Tail Structure Weight -- 10.3.4.Wing Penalty Function and MTOW -- 10.4.Subsonic Aircraft Wing -- 10.4.1.Problem Structure -- 10.4.2.Unconstrained Optima -- 10.4.3.Minimum Propulsion Weight Penalty -- 10.4.4.Accuracy -- 10.5.Constrained Optima -- 10.5.1.Take-Off Field Length -- 10.5.2.Tank Volume -- 10.5.3.Wing and Tail Weight Fraction -- 10.5.4.Selection of the Design -- 10.6.Transonic Aircraft Wing -- 10.6.1.Geometry -- 10.6.2.Wing Drag in the Design Condition -- 10.6.3.Modified Wing Penalty Function -- 10.6.4.Thickness Ratio Limit -- 10.6.5.WPF Affected by Sweep Angle and Thickness Ratio -- 10.7.Lift Coefficient and Aspect Ratio -- 10.7.1.Partial Optima -- 10.7.2.Constraints -- 10.7.3.Refining the Optimization -- 10.8.Detailed Design -- 10.8.1.Taper and Lift Distribution -- 10.8.2.Camber and Twist Distribution -- 10.8.3.Forward Swept Wing (FSW) -- 10.8.4.Wing-Tip Devices -- 10.9.High Lift Devices --
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

Description based on print version record and CIP data provided by publisher.

License restrictions may limit access.

Machine generated contents note: 1.Design of the Well-Tempered Aircraft -- 1.1.How Aircraft Design Developed -- 1.1.1.Evolution of Jetliners and Executive Aircraft -- 1.1.2.A Framework for Advanced Design -- 1.1.3.Analytical Design Optimization -- 1.1.4.Computational Design Environment -- 1.2.Concept Finding -- 1.2.1.Advanced Design -- 1.2.2.Pre-conceptual Studies -- 1.3.Product Development -- 1.3.1.Concept Definition -- 1.3.2.Preliminary Design -- 1.3.3.Detail Design -- 1.4.Baseline Design in a Nutshell -- 1.4.1.Baseline Sizing -- 1.4.2.Power Plant -- 1.4.3.Weight and Balance -- 1.4.4.Structure -- 1.4.5.Performance Analysis -- 1.4.6.Closing the Loop -- 1.5.Automated Design Synthesis -- 1.5.1.Computational Systems Requirements -- 1.5.2.Examples -- 1.5.3.Parametric Surveys -- 1.6.Technology Assessment -- 1.7.Structure of the Optimization Problem -- 1.7.1.Analysis Versus Synthesis -- 1.7.2.Problem Classification -- Bibliography -- 2.Early Conceptual Design -- 2.1.Scenario and Requirements -- 2.1.1.What Drives a Design? -- 2.1.2.Civil Airplane Categories -- 2.1.3.Top Level Requirements -- 2.2.Weight Terminology and Prediction -- 2.2.1.Method Classification -- 2.2.2.Basic Weight Components -- 2.2.3.Weight Limits -- 2.2.4.Transport Capability -- 2.3.The Unity Equation -- 2.3.1.Mission Fuel -- 2.3.2.Empty Weight -- 2.3.3.Design Weights -- 2.4.Range Parameter -- 2.4.1.Aerodynamic Efficiency -- 2.4.2.Specific Fuel Consumption and Overall Efficiency -- 2.4.3.Best Cruise Speed -- 2.5.Environmental Issues -- 2.5.1.Energy and Payload Fuel Efficiency -- 2.5.2.`Greener by Design' -- Bibliography -- 3.Propulsion and Engine Technology -- 3.1.Propulsion Leading the Way -- 3.2.Basic Concepts of Jet Propulsion -- 3.2.1.Turbojet Thrust -- 3.2.2.Turbofan Thrust -- 3.2.3.Specific Fuel Consumption -- 3.2.4.Overall Efficiency -- 3.2.5.Thermal and Propulsive Efficiency -- 3.2.6.Generalized Performance -- 3.2.7.Mach Number and Altitude Effects -- 3.3.Turboprop Engines -- 3.3.1.Power and Specific Fuel Consumption -- 3.3.2.Generalized Performance -- 3.3.3.High Speed Propellers -- 3.4.Turbofan Engine Layout -- 3.4.1.Bypass Ratio Trends -- 3.4.2.Rise and Fall of the Propfan -- 3.4.3.Rebirth of the Open Rotor? -- 3.5.Power Plant Selection -- 3.5.1.Power Plant Location -- 3.5.2.Alternative Fuels -- 3.5.3.Aircraft Noise -- Bibliography -- 4.Aerodynamic Drag and Its Reduction -- 4.1.Basic Concepts -- 4.1.1.Lift, Drag and Aerodynamic Efficiency -- 4.1.2.Drag Breakdown and Definitions -- 4.2.Decomposition Schemes and Terminology -- 4.2.1.Pressure and Friction Drag -- 4.2.2.Viscous Drag -- 4.2.3.Vortex Drag -- 4.2.4.Wave Drag -- 4.3.Subsonic Parasite and Induced Drag -- 4.3.1.Parasite Drag -- 4.3.2.Monoplane Induced Drag -- 4.3.3.Biplane Induced Drag -- 4.3.4.Multiplane and Boxplane Induced Drag -- 4.4.Drag Polar Representations -- 4.4.1.Two-term Approximation -- 4.4.2.Three-term Approximation -- 4.4.3.Reynolds Number Effects -- 4.4.4.Compressibility Correction -- 4.5.Drag Prediction -- 4.5.1.Interference Drag -- 4.5.2.Roughness and Excrescences -- 4.5.3.Corrections Dependent on Operation -- 4.5.4.Estimation of Maximum Subsonic L/D -- 4.5.5.Low-Speed Configuration -- 4.6.Viscous Drag Reduction -- 4.6.1.Wetted Area -- 4.6.2.Turbulent Friction Drag -- 4.6.3.Natural Laminar Flow -- 4.6.4.Laminar Flow Control -- 4.6.5.Hybrid Laminar Flow Control -- 4.6.6.Gains, Challenges and Barriers of LFC -- 4.7.Induced Drag Reduction -- 4.7.1.Wing Span -- 4.7.2.Spanwise Camber -- 4.7.3.Non-planar Wing Systems -- Bibliography -- 5.From Tube and Wing to Flying Wing -- 5.1.The Case for Flying Wings -- 5.1.1.Northrop's All-Wing Aircraft -- 5.1.2.Flying Wing Controversy -- 5.1.3.Whither All-Wing Airliners? -- 5.1.4.Fundamental Issues -- 5.2.Allocation of Useful Volume -- 5.2.1.Integration of the Useful Load -- 5.2.2.Study Ground Rules -- 5.2.3.Volume Ratio -- 5.2.4.Zero-Lift Drag -- 5.2.5.Generalized Aerodynamic Efficiency -- 5.2.6.Partial Optima -- 5.3.Survey of Aerodynamic Efficiency -- 5.3.1.Altitude Variation -- 5.3.2.Aspect Ratio and Span -- 5.3.3.Engine-Airframe Matching -- 5.4.Survey of the Parameter ML/D -- 5.4.1.Optimum Flight Conditions -- 5.4.2.The Drag Parameter -- 5.5.Integrated Configurations Compared -- 5.5.1.Conventional Baseline -- 5.5.2.Is a Wing Alone Sufficient? -- 5.5.3.Blended Wing Body -- 5.5.4.Hybrid Flying Wing -- 5.5.5.Span Loader -- 5.6.Flying Wing Design -- 5.6.1.Hang-Ups or Showstopper? -- 5.6.2.Structural Design and Weight -- 5.6.3.The Flying Wing: Will It Fly? -- Bibliography -- 6.Clean Sheet Design -- 6.1.Dominant and Radical Configurations -- 6.1.1.Established Configurations -- 6.1.2.New Paradigms -- 6.2.Morphology of Shapes -- 6.2.1.Classification -- 6.2.2.Lifting Systems -- 6.2.3.Plan View Classification -- 6.2.4.Strut-Braced Wings -- 6.2.5.Propulsion and Concept Integration -- 6.3.Wing and Tail Configurations -- 6.3.1.Aerodynamic Limits -- 6.3.2.The Balanced Design -- 6.3.3.Evaluation -- 6.3.4.Relaxed Inherent Stability -- 6.4.Aircraft Featuring a Foreplane -- 6.4.1.Canard Configuration -- 6.4.2.Three-Surface Aircraft -- 6.5.Non-Planar Lifting Systems -- 6.5.1.Transonic Boxplane -- 6.5.2.C-Wing -- 6.6.Joined Wing Aircraft -- 6.6.1.Structural Principles and Weight -- 6.6.2.Aerodynamic Aspects -- 6.6.3.Stability and Control -- 6.6.4.Design Integration -- 6.7.Twin-Fuselage Aircraft -- 6.7.1.Design Integration -- 6.8.Hydrogen-Fuelled Commercial Transports -- 6.8.1.Properties of LH2 -- 6.8.2.Fuel System -- 6.8.3.Handling Safety, Economics and Logistics -- 6.9.Promising Concepts -- Bibliography -- 7.Aircraft Design Optimization -- 7.1.The Perfect Design: An Illusion? -- 7.2.Elements of Optimization -- 7.2.1.Design Parameters -- 7.2.2.Optimal Control and Discrete-Variable Optimization -- 7.2.3.Basic Terminology -- 7.2.4.Single-Objective Optimization -- 7.2.5.Unconstrained Optimizer -- 7.2.6.Constrained Optimizer -- 7.3.Analytical or Numerical Optimization? -- 7.3.1.Analytical Approach -- 7.3.2.Multivariate Optimization -- 7.3.3.Unconstrained Optimization -- 7.3.4.Constrained Optimization -- 7.3.5.Response Surface Approximation -- 7.3.6.Global Models -- 7.4.Large Optimization Problems -- 7.4.1.Concept Sizing and Evaluation -- 7.4.2.Multidisciplinary Optimization -- 7.4.3.System Decomposition -- 7.4.4.Multilevel Optimization -- 7.4.5.Multi-Objective Optimization -- 7.5.Practical Optimization in Conceptual Design -- 7.5.1.Arguments of the Sceptic -- 7.5.2.Problem Structure -- 7.5.3.Selecting Selection Variables -- 7.5.4.Design Sensitivity -- 7.5.5.The Objective Function -- Bibliography -- 8.Theory of Optimum Weight -- 8.1.Weight Engineering: Core of Aircraft Design -- 8.1.1.Prediction Methods -- 8.1.2.Use of Statistics -- 8.2.Design Sensitivity -- 8.2.1.Problem Structure -- 8.2.2.Selection Variables -- 8.3.Jet Transport Empty Weight -- 8.3.1.Weight Breakdown -- 8.3.2.Wing Structure (Item 10) -- 8.3.3.Fuselage Structure (Item 11) -- 8.3.4.Empennage Structure (Items 12 and 13) -- 8.3.5.Landing Gear Structure (Item 14) -- 8.3.6.Power Plant and Engine Pylons (Items 2 and 15) -- 8.3.7.Systems, Furnishings and Operational Items (Items 3, 4 and 5) -- 8.3.8.Operating Empty Weight: Example -- 8.4.Design Sensitivity of Airframe Drag -- 8.4.1.Drag Decomposition -- 8.4.2.Aerodynamic Efficiency -- 8.5.Thrust, Power Plant and Fuel Weight -- 8.5.1.Installed Thrust and Power Plant Weight -- 8.5.2.Mission Fuel -- 8.5.3.Propulsion Weight Penalty -- 8.5.4.Wing and Propulsion Weight Fraction -- 8.5.5.Optimum Weight Fractions Compared -- 8.6.Take-Off Weight, Thrust and Fuel Efficiency -- 8.6.1.Maximum Take-Off Weight -- 8.6.2.Installed Thrust and Fuel Energy Efficiency -- 8.6.3.Unconstrained Optima Compared -- 8.6.4.Range for Given MTOW -- 8.6.5.Extended Range Version -- 8.7.Summary and Reflection -- 8.7.1.Which Figure of Merit? -- 8.7.2.Conclusion -- 8.7.3.Accuracy -- Bibliography -- 9.Matching Engines and Airframe -- 9.1.Requirements and Constraints -- 9.2.Cruise-Sized Engines --

9.2.1.Installed Take-Off Thrust -- 9.2.2.The Thumbprint -- 9.3.Low Speed Requirements -- 9.3.1.Stalling Speed -- 9.3.2.Take-Off Climb -- 9.3.3.Approach and Landing Climb -- 9.3.4.Second Segment Climb Gradient -- 9.4.Schematic Take-Off Analysis -- 9.4.1.Definitions of Take-Off Field Length -- 9.4.2.Take-Off Run -- 9.4.3.Airborne Distance -- 9.4.4.Take-Off Distance -- 9.4.5.Generalized Thrust and Span Loading Constraint -- 9.4.6.Minimum Thrust for Given TOFL -- 9.5.Approach and Landing -- 9.5.1.Landing Distance Analysis -- 9.5.2.Approach Speed and Wing Loading -- 9.6.Engine Selection and Installation -- 9.6.1.Identifying the Best Match -- 9.6.2.Initial Engine Assessment -- 9.6.3.Engine Selection -- Bibliography -- 10.Elements of Aerodynamic Wing Design -- 10.1.Introduction -- 10.1.1.Problem Structure -- 10.1.2.Relation to Engine Selection -- 10.2.Planform Geometry -- 10.2.1.Wing Area and Design Lift Coefficient -- 10.2.2.Span and Aspect Ratio -- 10.3.Design Sensitivity Information -- 10.3.1.Aerodynamic Efficiency -- 10.3.2.Propulsion Weight Contribution -- 10.3.3.Wing and Tail Structure Weight -- 10.3.4.Wing Penalty Function and MTOW -- 10.4.Subsonic Aircraft Wing -- 10.4.1.Problem Structure -- 10.4.2.Unconstrained Optima -- 10.4.3.Minimum Propulsion Weight Penalty -- 10.4.4.Accuracy -- 10.5.Constrained Optima -- 10.5.1.Take-Off Field Length -- 10.5.2.Tank Volume -- 10.5.3.Wing and Tail Weight Fraction -- 10.5.4.Selection of the Design -- 10.6.Transonic Aircraft Wing -- 10.6.1.Geometry -- 10.6.2.Wing Drag in the Design Condition -- 10.6.3.Modified Wing Penalty Function -- 10.6.4.Thickness Ratio Limit -- 10.6.5.WPF Affected by Sweep Angle and Thickness Ratio -- 10.7.Lift Coefficient and Aspect Ratio -- 10.7.1.Partial Optima -- 10.7.2.Constraints -- 10.7.3.Refining the Optimization -- 10.8.Detailed Design -- 10.8.1.Taper and Lift Distribution -- 10.8.2.Camber and Twist Distribution -- 10.8.3.Forward Swept Wing (FSW) -- 10.8.4.Wing-Tip Devices -- 10.9.High Lift Devices --

There are no comments on this title.

to post a comment.