Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

An introduction to LTE LTE, LTE-advanced, SAE, VoLTE and 4G mobile communications / Christopher Cox.

By: Material type: TextTextPublisher: Chichester, West Sussex, United Kingdon ; Hoboken, New Jersey : John Wiley & Sons, Inc., [2014]Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118818015 (ePub)
  • 1118818016 (ePub)
  • 9781118818022 (Adobe PDF)
  • 1118818024 (Adobe PDF)
  • 9781118818046
  • 1118818040
Subject(s): Genre/Form: Additional physical formats: Print version:: Introduction to LTE LTE, LTE-advanced, SAE, VoLTE and 4G mobile communicationsDDC classification:
  • 621.3845/6 23
LOC classification:
  • TK5103.48325
Online resources:
Contents:
1.1.Architectural Review of UMTS and GSM -- 1.1.1.High-Level Architecture -- 1.1.2.Architecture of the Radio Access Network -- 1.1.3.Architecture of the Core Network -- 1.1.4.Communication Protocols -- 1.2.History of Mobile Telecommunication Systems -- 1.2.1.From 1G to 3G -- 1.2.2.Third Generation Systems -- 1.3.The Need for LTE -- 1.3.1.The Growth of Mobile Data -- 1.3.2.Capacity of a Mobile Telecommunication System -- 1.3.3.Increasing the System Capacity -- 1.3.4.Additional Motivations -- 1.4.From UMTS to LTE -- 1.4.1.High-Level Architecture of LTE -- 1.4.2.Long-Term Evolution -- 1.4.3.System Architecture Evolution -- 1.4.4.LTE Voice Calls -- 1.4.5.The Growth bf LTE -- 1.5.From LTE to LTE-Advanced -- 1.5.1.The ITU Requirements for 4G -- 1.5.2.Requirements of LTE-Advanced -- 1.5.3.4G Communication Systems -- 1.5.4.The Meaning of 4G -- 1.6.The 3GPP Specifications for LTE -- References -- 2.1.High-Level Architecture of LTE -- 2.2.User Equipment
2.2.1.Architecture of the UE -- 2.2.2.UE Capabilities -- 2.3.Evolved UMTS Terrestrial Radio Access Network -- 2.3.1.Architecture of the E-UTRAN -- 2.3.2.Transport Network -- 2.3.3.Small Cells and the Home eNB -- 2.4.Evolved Packet Core -- 2.4.1.Architecture of the EPC -- 2.4.2.Roaming Architecture -- 2.4.3.Network Areas -- 2.4.4.Numbering, Addressing and Identification -- 2.5.Communication Protocols -- 2.5.1.Protocol Model -- 2.5.2.Air Interface Transport Protocols -- 2.5.3.Fixed Network Transport Protocols -- 2.5.4.User Plane Protocols -- 2.5.5.Signalling Protocols -- 2.6.Example Signalling Flows -- 2.6.1.Access Stratum Signalling -- 2.6.2.Non-Access Stratum Signalling -- 2.7.Bearer Management -- 2.7.1.The EPS Bearer -- 2.7.2.Default and Dedicated Bearers -- 2.7.3.Bearer Implementation Using GTP -- 2.7.4.Bearer Implementation Using GRE and PMIP -- 2.7.5.Signalling Radio Bearers -- 2.8.State Diagrams -- 2.8.1.EPS Mobility Management
2.8.2.EPS Connection Management -- 2.8.3.Radio Resource Control -- 2.9.Spectrum Allocation -- References -- 3.1.Radio Transmission and Reception -- 3.1.1.Carrier Signal -- 3.1.2.Modulation Techniques -- 3.1.3.The Modulation Process -- 3.1.4.The Demodulation Process -- 3.1.5.Channel Estimation -- 3.1.6.Bandwidth of the Modulated Signal -- 3.2.Radio Transmission in a Mobile Cellular Network -- 3.2.1.Multiple Access Techniques -- 3.2.2.FDD and TDD Modes -- 3.3.Impairments to the Received Signal -- 3.3.1.Propagation Loss -- 3.3.2.Noise and Interference -- 3.3.3.Multipath and Fading -- 3.3.4.Inter-symbol Interference -- 3.4.Error Management -- 3.4.1.Forward Error Correction -- 3.4.2.Automatic Repeat Request -- 3.4.3.Hybrid ARQ -- References -- 4.1.Principles of OFDMA -- 4.1.1.Sub-carriers -- 4.1.2.The OFDM Transmitter -- 4.1.3.The OFDM Receiver -- 4.1.4.The Fast Fourier Transform -- 4.1.5.Block Diagram of OFDMA -- 4.1.6.Details of the Fourier Transform
4.2.Benefits and Additional Features of OFDMA -- 4.2.1.Orthogonal Sub-carriers -- 4.2.2.Choice of Sub-carrier Spacing -- 4.2.3.Frequency-Specific Scheduling -- 4.2.4.Reduction of Inter-symbol Interference -- 4.2.5.Cyclic Prefix Insertion -- 4.2.6.Choice of Symbol Duration -- 4.2.7.Fractional Frequency Re-use -- 4.3.Single Carrier Frequency Division Multiple Access -- 4.3.1.Power Variations From OFDMA -- 4.3.2.Block Diagram of SC-FDMA -- References -- 5.1.Diversity Processing -- 5.1.1.Receive Diversity -- 5.1.2.Closed Loop Transmit Diversity -- 5.1.3.Open Loop Transmit Diversity -- 5.2.Spatial Multiplexing -- 5.2.1.Principles of Operation -- 5.2.2.Open Loop Spatial Multiplexing -- 5.2.3.Closed Loop Spatial Multiplexing -- 5.2.4.Matrix Representation -- 5.2.5.Implementation Issues -- 5.2.6.Multiple User MIMO -- 5.3.Beamforming -- 5.3.1.Principles of Operation -- 5.3.2.Beam Steering -- 5.3.3.Downlink Multiple User MIMO Revisited -- References
6.1.Air Interface Protocol Stack -- 6.2.Logical, Transport and Physical Channels -- 6.2.1.Logical Channels -- 6.2.2.Transport Channels -- 6.2.3.Physical Data Channels -- 6.2.4.Control Information -- 6.2.5.Physical Control Channels -- 6.2.6.Physical Signals -- 6.2.7.Information Flows -- 6.3.The Resource Grid -- 6.3.1.Slot Structure -- 6.3.2.Frame Structure -- 6.3.3.Uplink Timing Advance -- 6.3.4.Resource Grid Structure -- 6.3.5.Bandwidth Options -- 6.4.Multiple Antenna Transmission -- 6.4.1.Downlink Antenna Ports -- 6.4.2.Downlink Transmission Modes -- 6.5.Resource Element Mapping -- 6.5.1.Downlink Resource Element Mapping -- 6.5.2.Uplink Resource Element Mapping -- References -- 7.1.Acquisition Procedure -- 7.2.Synchronization Signals -- 7.2.1.Physical Cell Identity -- 7.2.2.Primary Synchronization Signal -- 7.2.3.Secondary Synchronization Signal -- 7.3.Downlink Reference Signals -- 7.4.Physical Broadcast Channel
7.5.Physical Control Format Indicator Channel -- 7.6.System Information -- 7.6.1.Organization of the System Information -- 7.6.2.Transmission and Reception of the System Information -- 7.7.Procedures after Acquisition -- References -- 8.1.Data Transmission Procedures -- 8.1.1.Downlink Transmission and Reception -- 8.1.2.Uplink Transmission and Reception -- 8.1.3.Semi Persistent Scheduling -- 8.2.Transmission of Scheduling Messages on the PDCCH -- 8.2.1.Downlink Control Information -- 8.2.2.Resource Allocation -- 8.2.3.Example: DCI Format 1 -- 8.2.4.Radio Network Temporary Identifiers -- 8.2.5.Transmission and Reception of the PDCCH -- 8.3.Data Transmission on the PDSCH and PUSCH -- 8.3.1.Transport Channel Processing -- 8.3.2.Physical Channel Processing -- 8.4.Transmission of Hybrid ARQ Indicators on the PHICH -- 8.4.1.Introduction -- 8.4.2.Resource Element Mapping of the PHICH -- 8.4.3.Physical Channel Processing of the PHICH
8.5.Uplink Control Information -- 8.5.1.Hybrid ARQ Acknowledgements -- 8.5.2.Channel Quality Indicator -- 8.5.3.Rank Indication -- 8.5.4.Precoding Matrix Indicator -- 8.5.5.Channel State Reporting Mechanisms -- 8.5.6.Scheduling Requests -- 8.6.Transmission of Uplink Control Information on the PUCCH -- 8.6.1.PUCCH Formats -- 8.6.2.PUCCH Resources -- 8.6.3.Physical Channel Processing of the PUCCH -- 8.7.Uplink Reference Signals -- 8.7.1.Demodulation Reference Signal -- 8.7.2.Sounding Reference Signal -- 8.8.Power Control -- 8.8.1.Uplink Power Calculation -- 8.8.2.Uplink Power Control Commands -- 8.8.3.Downlink Power Control -- 8.9.Discontinuous Reception -- 8.9.1.Discontinuous Reception and Paging in RRC_IDLE -- 8.9.2.Discontinuous Reception in RRC_CONNECTED -- References -- 9.1.Transmission of Random Access Preambles on the PRACH -- 9.1.1.Resource Element Mapping -- 9.1.2.Preamble Sequence Generation -- 9.1.3.Signal Transmission
9.2.Non-Contention-Based Procedure -- 9.3.Contention-Based Procedure -- References -- 10.1.Medium Access Control Protocol -- 10.1.1.Protocol Architecture -- 10.1.2.Timing Advance Commands -- 10.1.3.Buffer Status Reporting -- 10.1.4.Power Headroom Reporting -- 10.1.5.Multiplexing and De-multiplexing -- 10.1.6.Logical Channel Prioritization -- 10.1.7.Scheduling of Transmissions on the Air Interface -- 10.2.Radio Link Control Protocol -- 10.2.1.Protocol Architecture -- 10.2.2.Transparent Mode -- 10.2.3.Unacknowledged Mode -- 10.2.4.Acknowledged Mode -- 10.3.Packet Data Convergence Protocol -- 10.3.1.Protocol Architecture -- 10.3.2.Header Compression -- 10.3.3.Prevention of Packet Loss during Handover -- References -- 11.1.Power-On Sequence -- 11.2.Network and Cell Selection -- 11.2.1.Network Selection -- 11.2.2.Closed Subscriber Group Selection -- 11.2.3.Cell Selection -- 11.3.RRC Connection Establishment -- 11.3.1.Basic Procedure
11.3.2.Relationship with Other Procedures -- 11.4.Attach Procedure -- 11.4.1.IP Address-Allocation -- 11.4.2.Overview of the Attach Procedure -- 11.4.3.Attach Request -- 11.4.4.Identification and Security Procedures -- 11.4.5.Location Update -- 11.4.6.Default Bearer Creation -- 11.4.7.Attach Accept -- 11.4.8.Default Bearer Update -- 11.5.Detach Procedure -- References -- 12.1.Network Access Security -- 12.1.1.Security Architecture -- 12.1.2.Key Hierarchy -- 12.1.3.Authentication and Key Agreement -- 12.1.4.Security Activation -- 12.1.5.Ciphering -- 12.1.6.Integrity Protection -- 12.2.Network Domain Security -- 12.2.1.Security Protocols -- 12.2.2.Security in the Evolved Packet Core -- 12.2.3.Security in the Radio Access Network -- References -- 13.1.Policy and Charging Control -- 13.1.1.Quality of Service Parameters -- 13.1.2.Service Data Flows -- 13.1.3.Charging Parameters -- 13.1.4.Policy and Charging Control Rules
13.2.Policy and Charging Control Architecture -- 13.2.1.Basic PCC Architecture -- 13.2.2.Local Breakout Architecture -- 13.2.3.Architecture Using a PMIP Based S5/S8 -- 13.2.4.Software Protocols -- 13.3.Session Management Procedures -- 13.3.1.IP-CAN Session Establishment -- 13.3.2.Mobile Originated SDF Establishment -- 13.3.3.Server Originated SDF Establishment -- 13.3.4.Dedicated Bearer Establishment -- 13.3.5.PDN Connectivity Establishment -- 13.3.6.Other Session Management Procedures -- 13.4.Data Transport in the Evolved Packet Core -- 13.4.1.Packet Handling at the PDN Gateway -- 13.4.2.Data Transport Using GTP -- 13.4.3.Differentiated Services -- 13.4.4.Multiprotocol Label Switching -- 13.4.5.Data Transport Using GRE and PMIP -- 13.5.Charging and Billing -- 13.5.1.High Level Architecture -- 13.5.2.Offline Charging -- 13.5.3.Online Charging -- References -- 14.1.Transitions between Mobility Management States -- 14.1.1.S1 Release Procedure
14.1.2.Paging Procedure -- 14.1.3.Service Request Procedure -- 14.2.Cell Reselection in RRC_IDLE -- 14.2.1.Objectives -- 14.2.2.Measurement Triggering on the Same LTE Frequency -- 14.2.3.Cell Reselection to the Same LTE Frequency -- 14.2.4.Measurement Triggering on a Different LTE Frequency -- 14.2.5.Cell Reselection to a Different LTE Frequency -- 14.2.6.Fast Moving Mobiles -- 14.2.7.Tracking Area Update Procedure -- 14.2.8.Network Reselection -- 14.3.Measurements in RRC_CONNECTED -- 14.3.1.Objectives -- 14.3.2.Measurement Procedure -- 14.3.3.Measurement Reporting -- 14.3.4.Measurement Gaps -- 14.4.Handover in RRC_CONNECTED -- 14.4.1.X2 Based Handover Procedure -- 14.4.2.Handover Variations -- References -- 15.1.System Architecture -- 15.1.1.Architecture of the 2G/3G Packet Switched Domain -- 15.1.2.S3/S4-Based Inter-operation Architecture -- 15.1.3.Gn/Gp-Based Inter-operation Architecture -- 15.2.Power-On Procedures
15.3.Mobility Management in RRC_IDLE -- 15.3.1.Cell Reselection -- 15.3.2.Routing Area Update Procedure -- 15.3.3.Idle Mode Signalling Reduction -- 15.4.Mobility Management in RRC_CONNECTED -- 15.4.1.RRC Connection Release with Redirection -- 15.4.2.Measurement Procedures -- 15.4.3.Optimized Handover -- References -- 16.1.Generic System Architecture -- 16.1.1.Network-Based Mobility Architecture -- 16.1.2.Host-Based Mobility Architecture -- 16.1.3.Access Network Discovery and Selection Function -- 16.2.Generic Signalling Procedures -- 16.2.1.Overview of the Attach Procedure -- 16.2.2.Authentication and Key Agreement -- 16.2.3.PDN Connectivity Establishment -- 16.2.4.Radio Access Network Reselection -- 16.3.Inter-Operation with cdma2000 HRPD -- 16.3.1.System Architecture -- 16.3.2.Preregistration with cdma2000 -- 16.3.3.Cell Reselection in RRC_IDLE -- 16.3.4.Measurements and Handover in RRC_CONNECTED -- References -- 17.1.Self-Configuration of an eNB
17.1.1.Automatic Configuration of the Physical Cell Identity -- 17.1.2.Automatic Neighbour Relations -- 17.1.3.Random Access Channel Optimization -- 17.2.Inter-Cell Interference Coordination -- 17.3.Mobility Management -- 17.3.1.Mobility Load Balancing -- 17.3.2.Mobility Robustness Optimization -- 17.3.3.Energy Saving -- 17.4.Radio Access Network Information Management -- 17.4.1.Introduction -- 17.4.2.Transfer of System Information -- 17.4.3.Transfer of Self-Optimization Data -- 17.5.Drive Test Minimization -- References -- 18.1.Multimedia Broadcast/Multicast Service -- 18.1.1.Introduction -- 18.1.2.Multicast/Broadcast over a Single Frequency Network -- 18.1.3.Implementation of MBSFN in LTE -- 18.1.4.Architecture of MBMS -- 18.1.5.Operation of MBMS -- 18.2.Location Services -- 18.2.1.Introduction -- 18.2.2.Positioning Techniques -- 18.2.3.Location Service Architecture -- 18.2.4.Location Service Procedures -- 18.3.Other Enhancements in Release 9
18.3.1.Dual Layer Beamforming -- 18.3.2.Commercial Mobile Alert System -- References -- 19.1.Carrier Aggregation -- 19.1.1.Principles of Operation -- 19.1.2.UE Capabilities -- 19.1.3.Scheduling -- 19.1.4.Data Transmission and Reception -- 19.1.5.Uplink and Downlink Feedback -- 19.1.6.Other Physical Layer and MAC Procedures -- 19.1.7.RRC Procedures -- 19.2.Enhanced Downlink MIMO -- 19.2.1.Objectives -- 19.2.2.Downlink Reference Signals -- 19.2.3.Downlink Transmission and Feedback -- 19.3.Enhanced Uplink MIMO -- 19.3.1.Objectives -- 19.3.2.Implementation -- 19.4.Relays -- 19.4.1.Principles of Operation -- 19.4.2.Relaying Architecture -- 19.4.3.Enhancements to the Air Interface -- 19.5.Heterogeneous Networks -- 19.5.1.Introduction -- 19.5.2.Enhanced Inter-Cell Interference Coordination -- 19.5.3.Enhancements to Self-Optimizing Networks -- 19.6.Traffic Offload Techniques -- 19.6.1.Local IP Access -- 19.6.2.Selective IP Traffic Offload
19.6.3.Multi-Access PDN Connectivity -- 19.6.4.IP Flow Mobility -- 19.7.Overload Control for Machine-Type Communications -- References -- 20.1.Coordinated Multipoint Transmission and Reception -- 20.1.1.Objectives -- 20.1.2.Scenarios -- 20.1.3.CoMP Techniques -- 20.1.4.Standardization -- 20.1.5.Performance -- 20.2.Enhanced Physical Downlink Control Channel -- 20.3.Interference Avoidance for in Device Coexistence -- 20.4.Machine-Type Communications -- 20.4.1.Device Triggering -- 20.4.2.Numbering, Addressing and Identification -- 20.5.Mobile Data Applications -- 20.6.New Features in Release 12 -- 20.6.1.Proximity Services and Device to Device Communications -- 20.6.2.Dynamic Adaptation of the TDD Configuration -- 20.6.3.Enhancements for Machine-Type Communications and Mobile Data -- 20.6.4.Traffic Offloading Enhancements -- 20.7.Release 12 Studies -- 20.7.1.Enhancements to Small Cells and Heterogeneous Networks
20.7.2.Elevation Beamforming and Full Dimension MIMO -- References -- 21.1.Delivery of Voice and Text Messages over LTE -- 21.1.1.The Market for Voice and SMS -- 21.1.2.Third Party Voice over IP -- 21.1.3.The IP Multimedia Subsystem -- 21.1.4.VoLGA -- 21.1.5.Dual Radio Devices -- 21.1.6.Circuit Switched Fallback -- 21.2.System Architecture -- 21.2.1.Architecture of the 2G/3G Circuit Switched Domain -- 21.2.2.Circuit Switched Fallback Architecture -- 21.3.Attach Procedure -- 21.3.1.Combined EPS/IMSI Attach Procedure -- 21.3.2.Voice Domain Preference and UE Usage Setting -- 21.4.Mobility Management -- 21.4.1.Combined Tracking Area/Location Area Update Procedure -- 21.4.2.Alignment of Tracking Areas and Location Areas -- 21.4.3.Cell Reselection to UMTS or GSM -- 21.5.Call Setup -- 21.5.1.Mobile-Originated Call Setup using RRC Connection Release -- 21.5.2.Mobile Originated Call Setup using Handover
21.5.3.Signalling Messages in the Circuit Switched Domain -- 21.5.4.Mobile-Terminated Call Setup -- 21.5.5.Returning to LTE -- 21.6.SMS over SGs -- 21.6.1.System Architecture -- 21.6.2.SMS Delivery -- 21.7.Circuit Switched Fallback to cdma2000 1xRTT -- 21.8.Performance of Circuit Switched Fallback -- References -- 22.1.Introduction -- 22.1.1.The IP Multimedia Subsystem -- 22.1.2.VoLTE -- 22.1.3.Rich Communication Services -- 22.2.Hardware Architecture of the IMS -- 22.2.1.High-Level Architecture -- 22.2.2.Call Session Control Functions -- 22.2.3.Application Servers -- 22.2.4.Home Subscriber Server -- 22.2.5.User Equipment -- 22.2.6.Relationship with LTE -- 22.2.7.Border Control Functions -- 22.2.8.Media Gateway Functions -- 22.2.9.Multimedia Resource Functions -- 22.2.10.Security Architecture -- 22.2.11.Charging Architecture -- 22.3.Signalling Protocols -- 22.3.1.Session Initiation Protocol -- 22.3.2.Session Description Protocol
22.3.3.Other Signalling Protocols -- 22.4.Service Provision in the IMS -- 22.4.1.Service Profiles -- 22.4.2.Media Feature-Tags -- 22.4.3.The Multimedia Telephony Service for IMS -- 22.5.VoLTE Registration Procedure -- 22.5.1.Introduction -- 22.5.2.LTE Procedures -- 22.5.3.Contents of the REGISTER Request -- 22.5.4.IMS Registration Procedure -- 22.5.5.Routing of SIP Requests and Responses -- 22.5.6.Third-Party Registration with Application Servers -- 22.5.7.Subscription for Network-Initiated Deregistration -- 22.6.Call Setup and Release -- 22.6.1.Contents of the INVITE Request -- 22.6.2.Initial INVITE Request and Response -- 22.6.3.Acceptance of the Initial INVITE -- 22.6.4.Establishment of a Call to a Circuit Switched Network -- 22.6.5.Call Release -- 22.7.Access Domain Selection -- 22.7.1.Mobile-Originated Calls -- 22.7.2.Mobile-Terminated Calls -- 22.8.Single Radio Voice Call Continuity -- 22.8.1.Introduction -- 22.8.2.SRVCC Architecture
22.8.3.Attach, Registration and Call Setup Procedures -- 22.8.4.Handover Preparation -- 22.8.5.Updating the Remote Leg -- 22.8.6.Releasing the Source Leg -- 22.8.7.Handover Execution and Completion -- 22.8.8.Evolution of SRVCC -- 22.9.IMS Centralized Services -- 22.10.IMS Emergency Calls -- 22.10.1.Emergency Call Architecture -- 22.10.2.Emergency Call Setup Procedure -- 22.11.Delivery of SMS Messages over the IMS -- 22.11.1.SMS Architecture -- 22.11.2.Access Domain Selection -- References -- 23.1.Peak Data Rates of LTE and LTE-Advanced -- 23.1.1.Increase of the Peak Data Rate -- 23.1.2.Limitations on the Peak Data Rate -- 23.2.Coverage of an LTE Cell -- 23.2.1.Uplink Link Budget -- 23.2.2.Downlink Link Budget -- 23.2.3.Propagation Modelling -- 23.2.4.Coverage Estimation -- 23.3.Capacity of an LTE Cell -- 23.3.1.Capacity Estimation -- 23.3.2.Cell Capacity Simulations -- 23.4.Performance of Voice over IP -- 23.4.1.AMR Codec Modes
23.4.2.Transmission of AMR Frames on the Air Interface -- 23.4.3.Transmission of AMR Frames in the Fixed Network -- References.
Summary: Following on from the successful first edition (March 2012), this book gives a clear explanation of what LTE does and how it works. The content is expressed at a systems level, offering readers the opportunity to grasp the key factors that make LTE the hot topic amongst vendors and operators across the globe. The book assumes no more than a basic knowledge of mobile telecommunication systems, and the reader is not expected to have any previous knowledge of the complex mathematical operations that underpin LTE.This second edition introduces new material for the current state of the industry, such as the new features of LTE in Releases 11 and 12, notably coordinated multipoint transmission and proximity services; the main short- and long-term solutions for LTE voice calls, namely circuit switched fallback and the IP multimedia subsystem; and the evolution and current state of the LTE market. It also extends some of the material from the first edition, such as inter-operation with other technologies such as GSM, UMTS, wireless local area networks and cdma2000; additional features of LTE Advanced, notably heterogeneous networks and traffic offloading; data transport in the evolved packet core; coverage and capacity estimation for LTE; and a more rigorous treatment of modulation, demodulation and OFDMA. The author breaks down the system into logical blocks, by initially introducing the architecture of LTE, explaining the techniques used for radio transmission and reception and the overall operation of the system, and concluding with more specialized topics such as LTE voice calls and the later releases of the specifications. This methodical approach enables readers to move on to tackle the specifications and the more advanced texts with confidence.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Includes index.

Description based on print version record and CIP data provided by publisher.

Includes bibliographical references and index.

Following on from the successful first edition (March 2012), this book gives a clear explanation of what LTE does and how it works. The content is expressed at a systems level, offering readers the opportunity to grasp the key factors that make LTE the hot topic amongst vendors and operators across the globe. The book assumes no more than a basic knowledge of mobile telecommunication systems, and the reader is not expected to have any previous knowledge of the complex mathematical operations that underpin LTE.This second edition introduces new material for the current state of the industry, such as the new features of LTE in Releases 11 and 12, notably coordinated multipoint transmission and proximity services; the main short- and long-term solutions for LTE voice calls, namely circuit switched fallback and the IP multimedia subsystem; and the evolution and current state of the LTE market. It also extends some of the material from the first edition, such as inter-operation with other technologies such as GSM, UMTS, wireless local area networks and cdma2000; additional features of LTE Advanced, notably heterogeneous networks and traffic offloading; data transport in the evolved packet core; coverage and capacity estimation for LTE; and a more rigorous treatment of modulation, demodulation and OFDMA. The author breaks down the system into logical blocks, by initially introducing the architecture of LTE, explaining the techniques used for radio transmission and reception and the overall operation of the system, and concluding with more specialized topics such as LTE voice calls and the later releases of the specifications. This methodical approach enables readers to move on to tackle the specifications and the more advanced texts with confidence.

1.1.Architectural Review of UMTS and GSM -- 1.1.1.High-Level Architecture -- 1.1.2.Architecture of the Radio Access Network -- 1.1.3.Architecture of the Core Network -- 1.1.4.Communication Protocols -- 1.2.History of Mobile Telecommunication Systems -- 1.2.1.From 1G to 3G -- 1.2.2.Third Generation Systems -- 1.3.The Need for LTE -- 1.3.1.The Growth of Mobile Data -- 1.3.2.Capacity of a Mobile Telecommunication System -- 1.3.3.Increasing the System Capacity -- 1.3.4.Additional Motivations -- 1.4.From UMTS to LTE -- 1.4.1.High-Level Architecture of LTE -- 1.4.2.Long-Term Evolution -- 1.4.3.System Architecture Evolution -- 1.4.4.LTE Voice Calls -- 1.4.5.The Growth bf LTE -- 1.5.From LTE to LTE-Advanced -- 1.5.1.The ITU Requirements for 4G -- 1.5.2.Requirements of LTE-Advanced -- 1.5.3.4G Communication Systems -- 1.5.4.The Meaning of 4G -- 1.6.The 3GPP Specifications for LTE -- References -- 2.1.High-Level Architecture of LTE -- 2.2.User Equipment

2.2.1.Architecture of the UE -- 2.2.2.UE Capabilities -- 2.3.Evolved UMTS Terrestrial Radio Access Network -- 2.3.1.Architecture of the E-UTRAN -- 2.3.2.Transport Network -- 2.3.3.Small Cells and the Home eNB -- 2.4.Evolved Packet Core -- 2.4.1.Architecture of the EPC -- 2.4.2.Roaming Architecture -- 2.4.3.Network Areas -- 2.4.4.Numbering, Addressing and Identification -- 2.5.Communication Protocols -- 2.5.1.Protocol Model -- 2.5.2.Air Interface Transport Protocols -- 2.5.3.Fixed Network Transport Protocols -- 2.5.4.User Plane Protocols -- 2.5.5.Signalling Protocols -- 2.6.Example Signalling Flows -- 2.6.1.Access Stratum Signalling -- 2.6.2.Non-Access Stratum Signalling -- 2.7.Bearer Management -- 2.7.1.The EPS Bearer -- 2.7.2.Default and Dedicated Bearers -- 2.7.3.Bearer Implementation Using GTP -- 2.7.4.Bearer Implementation Using GRE and PMIP -- 2.7.5.Signalling Radio Bearers -- 2.8.State Diagrams -- 2.8.1.EPS Mobility Management

2.8.2.EPS Connection Management -- 2.8.3.Radio Resource Control -- 2.9.Spectrum Allocation -- References -- 3.1.Radio Transmission and Reception -- 3.1.1.Carrier Signal -- 3.1.2.Modulation Techniques -- 3.1.3.The Modulation Process -- 3.1.4.The Demodulation Process -- 3.1.5.Channel Estimation -- 3.1.6.Bandwidth of the Modulated Signal -- 3.2.Radio Transmission in a Mobile Cellular Network -- 3.2.1.Multiple Access Techniques -- 3.2.2.FDD and TDD Modes -- 3.3.Impairments to the Received Signal -- 3.3.1.Propagation Loss -- 3.3.2.Noise and Interference -- 3.3.3.Multipath and Fading -- 3.3.4.Inter-symbol Interference -- 3.4.Error Management -- 3.4.1.Forward Error Correction -- 3.4.2.Automatic Repeat Request -- 3.4.3.Hybrid ARQ -- References -- 4.1.Principles of OFDMA -- 4.1.1.Sub-carriers -- 4.1.2.The OFDM Transmitter -- 4.1.3.The OFDM Receiver -- 4.1.4.The Fast Fourier Transform -- 4.1.5.Block Diagram of OFDMA -- 4.1.6.Details of the Fourier Transform

4.2.Benefits and Additional Features of OFDMA -- 4.2.1.Orthogonal Sub-carriers -- 4.2.2.Choice of Sub-carrier Spacing -- 4.2.3.Frequency-Specific Scheduling -- 4.2.4.Reduction of Inter-symbol Interference -- 4.2.5.Cyclic Prefix Insertion -- 4.2.6.Choice of Symbol Duration -- 4.2.7.Fractional Frequency Re-use -- 4.3.Single Carrier Frequency Division Multiple Access -- 4.3.1.Power Variations From OFDMA -- 4.3.2.Block Diagram of SC-FDMA -- References -- 5.1.Diversity Processing -- 5.1.1.Receive Diversity -- 5.1.2.Closed Loop Transmit Diversity -- 5.1.3.Open Loop Transmit Diversity -- 5.2.Spatial Multiplexing -- 5.2.1.Principles of Operation -- 5.2.2.Open Loop Spatial Multiplexing -- 5.2.3.Closed Loop Spatial Multiplexing -- 5.2.4.Matrix Representation -- 5.2.5.Implementation Issues -- 5.2.6.Multiple User MIMO -- 5.3.Beamforming -- 5.3.1.Principles of Operation -- 5.3.2.Beam Steering -- 5.3.3.Downlink Multiple User MIMO Revisited -- References

6.1.Air Interface Protocol Stack -- 6.2.Logical, Transport and Physical Channels -- 6.2.1.Logical Channels -- 6.2.2.Transport Channels -- 6.2.3.Physical Data Channels -- 6.2.4.Control Information -- 6.2.5.Physical Control Channels -- 6.2.6.Physical Signals -- 6.2.7.Information Flows -- 6.3.The Resource Grid -- 6.3.1.Slot Structure -- 6.3.2.Frame Structure -- 6.3.3.Uplink Timing Advance -- 6.3.4.Resource Grid Structure -- 6.3.5.Bandwidth Options -- 6.4.Multiple Antenna Transmission -- 6.4.1.Downlink Antenna Ports -- 6.4.2.Downlink Transmission Modes -- 6.5.Resource Element Mapping -- 6.5.1.Downlink Resource Element Mapping -- 6.5.2.Uplink Resource Element Mapping -- References -- 7.1.Acquisition Procedure -- 7.2.Synchronization Signals -- 7.2.1.Physical Cell Identity -- 7.2.2.Primary Synchronization Signal -- 7.2.3.Secondary Synchronization Signal -- 7.3.Downlink Reference Signals -- 7.4.Physical Broadcast Channel

7.5.Physical Control Format Indicator Channel -- 7.6.System Information -- 7.6.1.Organization of the System Information -- 7.6.2.Transmission and Reception of the System Information -- 7.7.Procedures after Acquisition -- References -- 8.1.Data Transmission Procedures -- 8.1.1.Downlink Transmission and Reception -- 8.1.2.Uplink Transmission and Reception -- 8.1.3.Semi Persistent Scheduling -- 8.2.Transmission of Scheduling Messages on the PDCCH -- 8.2.1.Downlink Control Information -- 8.2.2.Resource Allocation -- 8.2.3.Example: DCI Format 1 -- 8.2.4.Radio Network Temporary Identifiers -- 8.2.5.Transmission and Reception of the PDCCH -- 8.3.Data Transmission on the PDSCH and PUSCH -- 8.3.1.Transport Channel Processing -- 8.3.2.Physical Channel Processing -- 8.4.Transmission of Hybrid ARQ Indicators on the PHICH -- 8.4.1.Introduction -- 8.4.2.Resource Element Mapping of the PHICH -- 8.4.3.Physical Channel Processing of the PHICH

8.5.Uplink Control Information -- 8.5.1.Hybrid ARQ Acknowledgements -- 8.5.2.Channel Quality Indicator -- 8.5.3.Rank Indication -- 8.5.4.Precoding Matrix Indicator -- 8.5.5.Channel State Reporting Mechanisms -- 8.5.6.Scheduling Requests -- 8.6.Transmission of Uplink Control Information on the PUCCH -- 8.6.1.PUCCH Formats -- 8.6.2.PUCCH Resources -- 8.6.3.Physical Channel Processing of the PUCCH -- 8.7.Uplink Reference Signals -- 8.7.1.Demodulation Reference Signal -- 8.7.2.Sounding Reference Signal -- 8.8.Power Control -- 8.8.1.Uplink Power Calculation -- 8.8.2.Uplink Power Control Commands -- 8.8.3.Downlink Power Control -- 8.9.Discontinuous Reception -- 8.9.1.Discontinuous Reception and Paging in RRC_IDLE -- 8.9.2.Discontinuous Reception in RRC_CONNECTED -- References -- 9.1.Transmission of Random Access Preambles on the PRACH -- 9.1.1.Resource Element Mapping -- 9.1.2.Preamble Sequence Generation -- 9.1.3.Signal Transmission

9.2.Non-Contention-Based Procedure -- 9.3.Contention-Based Procedure -- References -- 10.1.Medium Access Control Protocol -- 10.1.1.Protocol Architecture -- 10.1.2.Timing Advance Commands -- 10.1.3.Buffer Status Reporting -- 10.1.4.Power Headroom Reporting -- 10.1.5.Multiplexing and De-multiplexing -- 10.1.6.Logical Channel Prioritization -- 10.1.7.Scheduling of Transmissions on the Air Interface -- 10.2.Radio Link Control Protocol -- 10.2.1.Protocol Architecture -- 10.2.2.Transparent Mode -- 10.2.3.Unacknowledged Mode -- 10.2.4.Acknowledged Mode -- 10.3.Packet Data Convergence Protocol -- 10.3.1.Protocol Architecture -- 10.3.2.Header Compression -- 10.3.3.Prevention of Packet Loss during Handover -- References -- 11.1.Power-On Sequence -- 11.2.Network and Cell Selection -- 11.2.1.Network Selection -- 11.2.2.Closed Subscriber Group Selection -- 11.2.3.Cell Selection -- 11.3.RRC Connection Establishment -- 11.3.1.Basic Procedure

11.3.2.Relationship with Other Procedures -- 11.4.Attach Procedure -- 11.4.1.IP Address-Allocation -- 11.4.2.Overview of the Attach Procedure -- 11.4.3.Attach Request -- 11.4.4.Identification and Security Procedures -- 11.4.5.Location Update -- 11.4.6.Default Bearer Creation -- 11.4.7.Attach Accept -- 11.4.8.Default Bearer Update -- 11.5.Detach Procedure -- References -- 12.1.Network Access Security -- 12.1.1.Security Architecture -- 12.1.2.Key Hierarchy -- 12.1.3.Authentication and Key Agreement -- 12.1.4.Security Activation -- 12.1.5.Ciphering -- 12.1.6.Integrity Protection -- 12.2.Network Domain Security -- 12.2.1.Security Protocols -- 12.2.2.Security in the Evolved Packet Core -- 12.2.3.Security in the Radio Access Network -- References -- 13.1.Policy and Charging Control -- 13.1.1.Quality of Service Parameters -- 13.1.2.Service Data Flows -- 13.1.3.Charging Parameters -- 13.1.4.Policy and Charging Control Rules

13.2.Policy and Charging Control Architecture -- 13.2.1.Basic PCC Architecture -- 13.2.2.Local Breakout Architecture -- 13.2.3.Architecture Using a PMIP Based S5/S8 -- 13.2.4.Software Protocols -- 13.3.Session Management Procedures -- 13.3.1.IP-CAN Session Establishment -- 13.3.2.Mobile Originated SDF Establishment -- 13.3.3.Server Originated SDF Establishment -- 13.3.4.Dedicated Bearer Establishment -- 13.3.5.PDN Connectivity Establishment -- 13.3.6.Other Session Management Procedures -- 13.4.Data Transport in the Evolved Packet Core -- 13.4.1.Packet Handling at the PDN Gateway -- 13.4.2.Data Transport Using GTP -- 13.4.3.Differentiated Services -- 13.4.4.Multiprotocol Label Switching -- 13.4.5.Data Transport Using GRE and PMIP -- 13.5.Charging and Billing -- 13.5.1.High Level Architecture -- 13.5.2.Offline Charging -- 13.5.3.Online Charging -- References -- 14.1.Transitions between Mobility Management States -- 14.1.1.S1 Release Procedure

14.1.2.Paging Procedure -- 14.1.3.Service Request Procedure -- 14.2.Cell Reselection in RRC_IDLE -- 14.2.1.Objectives -- 14.2.2.Measurement Triggering on the Same LTE Frequency -- 14.2.3.Cell Reselection to the Same LTE Frequency -- 14.2.4.Measurement Triggering on a Different LTE Frequency -- 14.2.5.Cell Reselection to a Different LTE Frequency -- 14.2.6.Fast Moving Mobiles -- 14.2.7.Tracking Area Update Procedure -- 14.2.8.Network Reselection -- 14.3.Measurements in RRC_CONNECTED -- 14.3.1.Objectives -- 14.3.2.Measurement Procedure -- 14.3.3.Measurement Reporting -- 14.3.4.Measurement Gaps -- 14.4.Handover in RRC_CONNECTED -- 14.4.1.X2 Based Handover Procedure -- 14.4.2.Handover Variations -- References -- 15.1.System Architecture -- 15.1.1.Architecture of the 2G/3G Packet Switched Domain -- 15.1.2.S3/S4-Based Inter-operation Architecture -- 15.1.3.Gn/Gp-Based Inter-operation Architecture -- 15.2.Power-On Procedures

15.3.Mobility Management in RRC_IDLE -- 15.3.1.Cell Reselection -- 15.3.2.Routing Area Update Procedure -- 15.3.3.Idle Mode Signalling Reduction -- 15.4.Mobility Management in RRC_CONNECTED -- 15.4.1.RRC Connection Release with Redirection -- 15.4.2.Measurement Procedures -- 15.4.3.Optimized Handover -- References -- 16.1.Generic System Architecture -- 16.1.1.Network-Based Mobility Architecture -- 16.1.2.Host-Based Mobility Architecture -- 16.1.3.Access Network Discovery and Selection Function -- 16.2.Generic Signalling Procedures -- 16.2.1.Overview of the Attach Procedure -- 16.2.2.Authentication and Key Agreement -- 16.2.3.PDN Connectivity Establishment -- 16.2.4.Radio Access Network Reselection -- 16.3.Inter-Operation with cdma2000 HRPD -- 16.3.1.System Architecture -- 16.3.2.Preregistration with cdma2000 -- 16.3.3.Cell Reselection in RRC_IDLE -- 16.3.4.Measurements and Handover in RRC_CONNECTED -- References -- 17.1.Self-Configuration of an eNB

17.1.1.Automatic Configuration of the Physical Cell Identity -- 17.1.2.Automatic Neighbour Relations -- 17.1.3.Random Access Channel Optimization -- 17.2.Inter-Cell Interference Coordination -- 17.3.Mobility Management -- 17.3.1.Mobility Load Balancing -- 17.3.2.Mobility Robustness Optimization -- 17.3.3.Energy Saving -- 17.4.Radio Access Network Information Management -- 17.4.1.Introduction -- 17.4.2.Transfer of System Information -- 17.4.3.Transfer of Self-Optimization Data -- 17.5.Drive Test Minimization -- References -- 18.1.Multimedia Broadcast/Multicast Service -- 18.1.1.Introduction -- 18.1.2.Multicast/Broadcast over a Single Frequency Network -- 18.1.3.Implementation of MBSFN in LTE -- 18.1.4.Architecture of MBMS -- 18.1.5.Operation of MBMS -- 18.2.Location Services -- 18.2.1.Introduction -- 18.2.2.Positioning Techniques -- 18.2.3.Location Service Architecture -- 18.2.4.Location Service Procedures -- 18.3.Other Enhancements in Release 9

18.3.1.Dual Layer Beamforming -- 18.3.2.Commercial Mobile Alert System -- References -- 19.1.Carrier Aggregation -- 19.1.1.Principles of Operation -- 19.1.2.UE Capabilities -- 19.1.3.Scheduling -- 19.1.4.Data Transmission and Reception -- 19.1.5.Uplink and Downlink Feedback -- 19.1.6.Other Physical Layer and MAC Procedures -- 19.1.7.RRC Procedures -- 19.2.Enhanced Downlink MIMO -- 19.2.1.Objectives -- 19.2.2.Downlink Reference Signals -- 19.2.3.Downlink Transmission and Feedback -- 19.3.Enhanced Uplink MIMO -- 19.3.1.Objectives -- 19.3.2.Implementation -- 19.4.Relays -- 19.4.1.Principles of Operation -- 19.4.2.Relaying Architecture -- 19.4.3.Enhancements to the Air Interface -- 19.5.Heterogeneous Networks -- 19.5.1.Introduction -- 19.5.2.Enhanced Inter-Cell Interference Coordination -- 19.5.3.Enhancements to Self-Optimizing Networks -- 19.6.Traffic Offload Techniques -- 19.6.1.Local IP Access -- 19.6.2.Selective IP Traffic Offload

19.6.3.Multi-Access PDN Connectivity -- 19.6.4.IP Flow Mobility -- 19.7.Overload Control for Machine-Type Communications -- References -- 20.1.Coordinated Multipoint Transmission and Reception -- 20.1.1.Objectives -- 20.1.2.Scenarios -- 20.1.3.CoMP Techniques -- 20.1.4.Standardization -- 20.1.5.Performance -- 20.2.Enhanced Physical Downlink Control Channel -- 20.3.Interference Avoidance for in Device Coexistence -- 20.4.Machine-Type Communications -- 20.4.1.Device Triggering -- 20.4.2.Numbering, Addressing and Identification -- 20.5.Mobile Data Applications -- 20.6.New Features in Release 12 -- 20.6.1.Proximity Services and Device to Device Communications -- 20.6.2.Dynamic Adaptation of the TDD Configuration -- 20.6.3.Enhancements for Machine-Type Communications and Mobile Data -- 20.6.4.Traffic Offloading Enhancements -- 20.7.Release 12 Studies -- 20.7.1.Enhancements to Small Cells and Heterogeneous Networks

20.7.2.Elevation Beamforming and Full Dimension MIMO -- References -- 21.1.Delivery of Voice and Text Messages over LTE -- 21.1.1.The Market for Voice and SMS -- 21.1.2.Third Party Voice over IP -- 21.1.3.The IP Multimedia Subsystem -- 21.1.4.VoLGA -- 21.1.5.Dual Radio Devices -- 21.1.6.Circuit Switched Fallback -- 21.2.System Architecture -- 21.2.1.Architecture of the 2G/3G Circuit Switched Domain -- 21.2.2.Circuit Switched Fallback Architecture -- 21.3.Attach Procedure -- 21.3.1.Combined EPS/IMSI Attach Procedure -- 21.3.2.Voice Domain Preference and UE Usage Setting -- 21.4.Mobility Management -- 21.4.1.Combined Tracking Area/Location Area Update Procedure -- 21.4.2.Alignment of Tracking Areas and Location Areas -- 21.4.3.Cell Reselection to UMTS or GSM -- 21.5.Call Setup -- 21.5.1.Mobile-Originated Call Setup using RRC Connection Release -- 21.5.2.Mobile Originated Call Setup using Handover

21.5.3.Signalling Messages in the Circuit Switched Domain -- 21.5.4.Mobile-Terminated Call Setup -- 21.5.5.Returning to LTE -- 21.6.SMS over SGs -- 21.6.1.System Architecture -- 21.6.2.SMS Delivery -- 21.7.Circuit Switched Fallback to cdma2000 1xRTT -- 21.8.Performance of Circuit Switched Fallback -- References -- 22.1.Introduction -- 22.1.1.The IP Multimedia Subsystem -- 22.1.2.VoLTE -- 22.1.3.Rich Communication Services -- 22.2.Hardware Architecture of the IMS -- 22.2.1.High-Level Architecture -- 22.2.2.Call Session Control Functions -- 22.2.3.Application Servers -- 22.2.4.Home Subscriber Server -- 22.2.5.User Equipment -- 22.2.6.Relationship with LTE -- 22.2.7.Border Control Functions -- 22.2.8.Media Gateway Functions -- 22.2.9.Multimedia Resource Functions -- 22.2.10.Security Architecture -- 22.2.11.Charging Architecture -- 22.3.Signalling Protocols -- 22.3.1.Session Initiation Protocol -- 22.3.2.Session Description Protocol

22.3.3.Other Signalling Protocols -- 22.4.Service Provision in the IMS -- 22.4.1.Service Profiles -- 22.4.2.Media Feature-Tags -- 22.4.3.The Multimedia Telephony Service for IMS -- 22.5.VoLTE Registration Procedure -- 22.5.1.Introduction -- 22.5.2.LTE Procedures -- 22.5.3.Contents of the REGISTER Request -- 22.5.4.IMS Registration Procedure -- 22.5.5.Routing of SIP Requests and Responses -- 22.5.6.Third-Party Registration with Application Servers -- 22.5.7.Subscription for Network-Initiated Deregistration -- 22.6.Call Setup and Release -- 22.6.1.Contents of the INVITE Request -- 22.6.2.Initial INVITE Request and Response -- 22.6.3.Acceptance of the Initial INVITE -- 22.6.4.Establishment of a Call to a Circuit Switched Network -- 22.6.5.Call Release -- 22.7.Access Domain Selection -- 22.7.1.Mobile-Originated Calls -- 22.7.2.Mobile-Terminated Calls -- 22.8.Single Radio Voice Call Continuity -- 22.8.1.Introduction -- 22.8.2.SRVCC Architecture

22.8.3.Attach, Registration and Call Setup Procedures -- 22.8.4.Handover Preparation -- 22.8.5.Updating the Remote Leg -- 22.8.6.Releasing the Source Leg -- 22.8.7.Handover Execution and Completion -- 22.8.8.Evolution of SRVCC -- 22.9.IMS Centralized Services -- 22.10.IMS Emergency Calls -- 22.10.1.Emergency Call Architecture -- 22.10.2.Emergency Call Setup Procedure -- 22.11.Delivery of SMS Messages over the IMS -- 22.11.1.SMS Architecture -- 22.11.2.Access Domain Selection -- References -- 23.1.Peak Data Rates of LTE and LTE-Advanced -- 23.1.1.Increase of the Peak Data Rate -- 23.1.2.Limitations on the Peak Data Rate -- 23.2.Coverage of an LTE Cell -- 23.2.1.Uplink Link Budget -- 23.2.2.Downlink Link Budget -- 23.2.3.Propagation Modelling -- 23.2.4.Coverage Estimation -- 23.3.Capacity of an LTE Cell -- 23.3.1.Capacity Estimation -- 23.3.2.Cell Capacity Simulations -- 23.4.Performance of Voice over IP -- 23.4.1.AMR Codec Modes

23.4.2.Transmission of AMR Frames on the Air Interface -- 23.4.3.Transmission of AMR Frames in the Fixed Network -- References.

There are no comments on this title.

to post a comment.