Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Understanding enzymes : function, design, engineering and analysis / edited by Allan Svendsen.

Contributor(s): Material type: TextTextPublisher: Singapore : Pan Stanford Publishing, 2016Edition: 1stDescription: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789814669337 (PDF ebook) :
Subject(s): Additional physical formats: Print version :: No titleDDC classification:
  • 572.7 23 UND
Contents:
A practical guide to the quantitative analysis of engineered enzymes. Protein Conformational Motions - Enzyme Catalysis. Enzymology meets Nanotechnology: Single-molecule methods for observing enzyme kinetics in real time. Interfacial enzyme function visualized using neutron, x-ray and light scattering methods. Folding dynamics and structural basis of the enzyme mechanism of ubiquitin C-terminal hydroylases. Stabilisation of Enzymes by metal binding: Structures of Alkalophilic Bacillus proteinases and analysis of the second metal binding site of subtilases. Structure and Functional Roles of Surface Binding Sites in Amylolytic Enzymes. Interfacial Enzymes and their Interactions with Surfaces: Molecular Simulation Studies. Sequence, structure, function: What we learn from analyzing protein families. Bioinformatic analysis of protein families to select function-related variable positions. Decoding life secrets in sequences by chemicals. Role of tunnels and gates in enzymatic catalysis. Molecule descriptors for the structureal analysis of enzyme active sites. Hydration effects on enzyme properties in nonaqueous media analysed by MD simulations. Understanding esterase and amidase reaction specificities by molecular modelling. Towards new non-natural TIM-barrel enzymes using computational design and directed evolution approaches. Handling the Numbers Problem in Directed Evolution. Hints from Nature: Metagenomics in Enzyme Engineering. A functional and structural assessment of circularly permuted Bacillus circulans xylanase and Candida antarctica lipase B. Ancestral Reconstruction in Enzymes. High throughput screening or selection methods for evolutionary enzyme engineering. Nanoscale Enzyme Screening Technologies. Computational Enzyme Engineering: Activity Screening using Quantum Chemistry. In silico screening of enzyme variants by molecular dynamics simulation. Kinetic and thermodynamic stability of variant enzymes.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Date due Barcode
Books Books Central Library, SUST General Stacks 572.7 UND (Browse shelf(Opens below)) 1 Available 0073239

Academic

A practical guide to the quantitative analysis of engineered enzymes. Protein Conformational Motions - Enzyme Catalysis. Enzymology meets Nanotechnology: Single-molecule methods for observing enzyme kinetics in real time. Interfacial enzyme function visualized using neutron, x-ray and light scattering methods. Folding dynamics and structural basis of the enzyme mechanism of ubiquitin C-terminal hydroylases. Stabilisation of Enzymes by metal binding: Structures of Alkalophilic Bacillus proteinases and analysis of the second metal binding site of subtilases. Structure and Functional Roles of Surface Binding Sites in Amylolytic Enzymes. Interfacial Enzymes and their Interactions with Surfaces: Molecular Simulation Studies. Sequence, structure, function: What we learn from analyzing protein families. Bioinformatic analysis of protein families to select function-related variable positions. Decoding life secrets in sequences by chemicals. Role of tunnels and gates in enzymatic catalysis. Molecule descriptors for the structureal analysis of enzyme active sites. Hydration effects on enzyme properties in nonaqueous media analysed by MD simulations. Understanding esterase and amidase reaction specificities by molecular modelling. Towards new non-natural TIM-barrel enzymes using computational design and directed evolution approaches. Handling the Numbers Problem in Directed Evolution. Hints from Nature: Metagenomics in Enzyme Engineering. A functional and structural assessment of circularly permuted Bacillus circulans xylanase and Candida antarctica lipase B. Ancestral Reconstruction in Enzymes. High throughput screening or selection methods for evolutionary enzyme engineering. Nanoscale Enzyme Screening Technologies. Computational Enzyme Engineering: Activity Screening using Quantum Chemistry. In silico screening of enzyme variants by molecular dynamics simulation. Kinetic and thermodynamic stability of variant enzymes.

Legal Deposit; Only available on premises controlled by the deposit library and to one user at any one time; The Legal Deposit Libraries (Non-Print Works) Regulations (UK). UkOxU

Restricted: Printing from this resource is governed by The Legal Deposit Libraries (Non-Print Works) Regulations (UK) and UK copyright law currently in force. UkOxU

Description based on CIP data; item not viewed.

There are no comments on this title.

to post a comment.