Machine learning : an algorithmic perspective / Stephen Marsland.
Material type:
TextSeries: Chapman & Hall/CRC machine learning & pattern recognition seriesPublisher: Boca Raton : CRC Press, [2015]Edition: Second editionDescription: xx, 437 pages : illustrations ; 25 cmContent type: - text
- unmediated
- volume
- 9781466583283
- 1466583282
- 006.31 MAM 2nd edition
- Q325.5 .M368 2015
| Item type | Current library | Call number | Copy number | Status | Date due | Barcode |
|---|---|---|---|---|---|---|
Books
|
Central Library, SUST General Stacks | 006.31 MAM (Browse shelf(Opens below)) | 1 | Available | 0081964 | |
Books
|
Central Library, SUST General Stacks | 006.31 MAM (Browse shelf(Opens below)) | 2 | Available | 0081965 | |
Books
|
Central Library, SUST General Stacks | 006.31 MAM (Browse shelf(Opens below)) | 3 | Available | 0081966 | |
Books
|
Central Library, SUST General Stacks | 006.31 MAM (Browse shelf(Opens below)) | 4 | Available | 0081967 | |
Books
|
Central Library, SUST General Stacks | 006.31 MAM (Browse shelf(Opens below)) | 5 | Available | 0081968 |
Browsing Central Library, SUST shelves, Shelving location: General Stacks Close shelf browser (Hides shelf browser)
|
|
|
|
|
|
|
||
| 006.31 MAM Machine learning : | 006.31 MAM Machine learning : | 006.31 MAM Machine learning : | 006.31 MAM Machine learning : an algorithmic perspective / | 006.31 MAM Machine learning : an algorithmic perspective / | 006.31 MAM Machine learning : an algorithmic perspective / | 006.31 MAM Machine learning : an algorithmic perspective / |
"A Chapman & Hall book."
Includes bibliographical references and index.
Introduction -- Preliminaries -- Neurons, neural networks, and linear discriminants -- The multi-layer perceptron -- Radial basis functions and splines -- Dimensionality reduction -- Probabilistic learning -- Support vector machines -- Optimisation and search -- Evolutionary learning -- Reinforcement learning -- Learning with trees -- Decision by committee: ensemble learning -- Unsupervised learning -- Markov chain Monte Carlo (MCMC) methods -- Graphical models -- Symmetric weights and deep belief networks -- Gaussian processes -- Python.

There are no comments on this title.