TY - BOOK AU - Sheng,Xin-Qing AU - Song,Wei TI - Essentials of Computational Electromagnetics SN - 9780470829639 AV - QC760.54 .S54 2012 U1 - 537.0285 PY - 2012/// CY - Hoboken PB - John Wiley & Sons KW - Electromagnetism KW - Data processing KW - Mathematical models KW - SCIENCE KW - Science KW - Physics KW - Electricity KW - bisacsh KW - fast KW - Electronic books KW - local N1 - Includes bibliographical references and index; Essentials of Computational Electromagnetics; Contents; Preface; 1 Mathematical Formulations for Electromagnetic Fields; 1.1 Deterministic Vector Partial Differential System of the Electromagnetic Fields; 1.1.1 Maxwell's Equations; 1.1.2 Constitutive Relations; 1.1.3 Boundary Conditions; 1.1.4 Maxwell's Equations in the Frequency Domain; 1.1.5 Uniqueness Theorem; 1.2 Vector Wave Equation of the Electromagnetic Fields; 1.3 Vector Integral Equation of the Electromagnetic Fields; 1.3.1 Equivalence Principle; 1.3.2 Solution of Maxwell's Equation in Free Space; 1.3.3 Integral Equations of Metallic Scattering Problems; 1.3.4 Integral Equation of Homogeneous Dielectric Scattering Problems; 1.3.5 Integral Equation of Inhomogeneous Dielectric Scattering Problems; 1.3.6 Integral Equations of Scattering in Layered Medium; References; 2 Method of Moments; 2.1 Scattering from 3D PEC Objects; 2.1.1 Formulation of the Problem; 2.1.2 Discretization in MoM; 2.1.3 Choice of Basis and Testing Functions; 2.1.4 Discretized Integral Equation (DIE) and the Numerical Behavior Analysis; 2.1.5 Handling of Singularity; 2.1.6 Comparison of EFIE and MFIE; 2.1.7 Interior Resonance Problem; 2.1.8 Fast Multipole Method; 2.1.9 Calculation of Scattered Fields; 2.1.10 Writing Computer Program; 2.1.11 Numerical Examples; 2.1.12 Parallel Technology; 2.1.13 Strong Scalability; 2.1.14 Weak Scalability; 2.2 Scattering from Three-Dimensional Homogeneous Dielectric Objects; 2.2.1 Mathematic Formulation of the Problem; 2.2.2 Discretized Forms and Their Numerical Performance; 2.2.3 Numerical Examples; 2.2.4 Implementation of Single Integral Equation and the Numerical Characteristics; 2.3 Scattering from Three-Dimensional Inhomogeneous Dielectric Objects; 2.3.1 Mathematic Formulation of the Problem; 2.3.2 Rooftop Basis Functions; 2.3.3 Discretization of the VIE; 2.3.4 Singularity Processing; 2.3.5 Fast Solution of the Discretized VIE; 2.3.6 Numerical Examples; 2.4 Essential Points in MoM for Solving Other Problems; 2.4.1 Scattering from Two-Dimensional Objects; 2.4.2 Scattering from Periodic Structures; 2.4.3 Scattering from Two-and-Half-Dimensional Objects; 2.4.4 Radiation Problems; References; 3 Finite-Element Method; 3.1 Eigenmodes Problems of Dielectric-Loaded Waveguides; 3.1.1 Functional Formulation; 3.1.2 Choice of Basis Functions; 3.1.3 Discretization of the Functional; 3.1.4 Imposition of the Boundary Condition; 3.1.5 Solution of the Generalized Eigenvalue Equation; 3.1.6 Computer Programming; 3.1.7 Numerical Examples; 3.2 Discontinuity Problem in Waveguides; 3.2.1 Functional Formulation; 3.2.2 Choice of the Basis Functions; 3.2.3 Discretization of the Functional; 3.2.4 Solution of the Linear Equations; 3.2.5 Extraction of the Scattering Parameters; 3.2.6 Numerical Examples; 3.3 Scattering from Three-Dimensional Objects; 3.3.1 Mathematic Formulation of the Problem; 3.3.2 Writing Computer Program; 3.3.3 Numerical Results; 3.4 Node-Edge Element N2 - Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results UR - http://onlinelibrary.wiley.com/book/10.1002/9780470829646 ER -