Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Data science from scratch : first principles with Python / Joel Grus.

By: Material type: TextTextPublisher: Sebastopol, CA : O'Reilly Media, [2019]Edition: Second editionDescription: xvii, 384 pages : illustrations ; 24 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9781492041139
  • 1492041130
Subject(s): DDC classification:
  • 005.7565 23 GRD
LOC classification:
  • QA76.73.P98 G78 2019
Contents:
Introduction -- A crash course in Python -- Visualizing data -- Linear algebra -- Statistics -- Probability -- Hypothesis and inference -- Gradient descent -- Getting data -- Working with data -- Machine learning -- k-Nearest neighbors -- Naive bayes -- Simple linear regression -- Multiple regression -- Logistic regression -- Decision trees -- Neural networks -- Deep learning -- Clustering -- Natural language processing -- Network analysis -- Recommender systems -- Databases and SQL -- MapReduce -- Data ethics -- Go forth and do data science.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Date due Barcode
Books Books Central Library, SUST General Stacks 005.7565 GRD (Browse shelf(Opens below)) 1 Available 0074298

Includes bibliographical references and index.

Introduction -- A crash course in Python -- Visualizing data -- Linear algebra -- Statistics -- Probability -- Hypothesis and inference -- Gradient descent -- Getting data -- Working with data -- Machine learning -- k-Nearest neighbors -- Naive bayes -- Simple linear regression -- Multiple regression -- Logistic regression -- Decision trees -- Neural networks -- Deep learning -- Clustering -- Natural language processing -- Network analysis -- Recommender systems -- Databases and SQL -- MapReduce -- Data ethics -- Go forth and do data science.

There are no comments on this title.

to post a comment.