Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods [electronic resource] / by Chris Aldrich, Lidia Auret.

By: Contributor(s): Material type: TextTextSeries: Advances in Computer Vision and Pattern RecognitionPublisher: London : Springer London : Imprint: Springer, 2013Description: XIX, 374 p. 208 illus., 151 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781447151852
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q334-342
  • TJ210.2-211.495
Online resources:
Contents:
Introduction -- Overview of Process Fault Diagnosis -- Artificial Neural Networks -- Statistical Learning Theory and Kernel-Based Methods -- Tree-Based Methods -- Fault Diagnosis in Steady State Process Systems -- Dynamic Process Monitoring -- Process Monitoring Using Multiscale Methods.
In: Springer eBooksSummary: Algorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data. This unique text/reference describes in detail the latest advances in Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: Reviews the application of machine learning to process monitoring and fault diagnosis Discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods Examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning Describes the use of spectral methods in process fault diagnosis This highly practical and clearly-structured work is an invaluable resource for all researchers and practitioners involved in process control, multivariate statistics and machine learning. Dr. Chris Aldrich is a Professor in the Department of Metallurgical and Minerals Engineering at Curtin University, Perth, Australia. Dr. Lidia Auret is a Lecturer in the Department of Process Engineering at Stellenbosch University, South Africa.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Overview of Process Fault Diagnosis -- Artificial Neural Networks -- Statistical Learning Theory and Kernel-Based Methods -- Tree-Based Methods -- Fault Diagnosis in Steady State Process Systems -- Dynamic Process Monitoring -- Process Monitoring Using Multiscale Methods.

Algorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data. This unique text/reference describes in detail the latest advances in Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: Reviews the application of machine learning to process monitoring and fault diagnosis Discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods Examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning Describes the use of spectral methods in process fault diagnosis This highly practical and clearly-structured work is an invaluable resource for all researchers and practitioners involved in process control, multivariate statistics and machine learning. Dr. Chris Aldrich is a Professor in the Department of Metallurgical and Minerals Engineering at Curtin University, Perth, Australia. Dr. Lidia Auret is a Lecturer in the Department of Process Engineering at Stellenbosch University, South Africa.

There are no comments on this title.

to post a comment.