000 05494nam a22006377a 4500
001 sulb-eb0022906
003 BD-SySUS
005 20160413122325.0
007 cr nn 008mamaa
008 131002s2013 xxu| s |||| 0|eng d
020 _a9781461481690
_9978-1-4614-8169-0
024 7 _a10.1007/978-1-4614-8169-0
_2doi
050 4 _aT174.7
050 4 _aTA418.9.N35
072 7 _aTBN
_2bicssc
072 7 _aTEC027000
_2bisacsh
072 7 _aSCI050000
_2bisacsh
082 0 4 _a620.115
_223
245 1 0 _aSilicon-based Nanomaterials
_h[electronic resource] /
_cedited by Handong Li, Jiang Wu, Zhiming M. Wang.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _aXII, 409 p. 279 illus., 178 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Series in Materials Science,
_x0933-033X ;
_v187
505 0 _aPreface -- Chapter 1: Porous Silicon as Anode Material for Lithium Ion Batteries -- Chapter 2: The development of Si and Ge-based nanomaterials for high performance lithium ion battery anodes -- Chapter 3: Light Trapping in Coaxial Nanowires  of c-Si Cores and a-Si Shells -- Chapter 4: Applications of Ordered Si Nanowire Array to Solar Energy Harvesting and NEMS -- Chapter 5: Synchrotron-excited photoluminescence spectroscopy of silicon- and carbon-containing quantum dots in low dimensional SiO2 matrices -- Chapter 6: Silicon nanoparticles-based light emitting capacitors -- Chapter 7: Electronic and Optical Properties of Silicon Carbide Nanostructures -- Chapter 8: Plasma Enabled Fabrication of Silicon Carbide Nanostructures -- Chapter 9: Catalyst-free chemical vapor deposition for synthesis of SiC nanowires with controlled morphology -- Chapter 10: Adhesion and Indentation fracture behavior of Silicon carbonitride nanocomposite coatings deposited by Magnetron sputtering -- Chapter 11: Impact of Defects and Doping on Electron Transport in SiCNTs -- Chapter 12: Synthesis, Properties and Applications of One-Dimensional Transition Metal Silicide Nanostructures -- Chapter 13: Integration of strain free III-V quantum dots on silicon -- Chapter 14: III-V Quantum-Dot Materials and Devices Monolithically Grown on Si Substrates -- Chapter 15: Cubic GaN on Nano-patterned 3C-SiC/Si (001) Substrates -- Index.
520 _aA variety of nanomaterials have excellent optoelectronic and electronic properties for novel device applications. At the same time, and with advances in silicon integrated circuit (IC) techniques, compatible Si-based nanomaterials hold promise of applying the advantages of nanomaterials to the conventional IC industry. This book focuses not only on silicon nanomaterials, but also summarizes up-to-date developments in the integration of non-silicon nanomaterials on silicon. The book showcases the work of leading researchers from around the world who address such key questions as: Which silicon nanomaterials can give the desired optical, electrical, and structural properties, and how are they prepared? What nanomaterials can be integrated on to a silicon substrate and how is this accomplished? What Si-based nanomaterials may bring a breakthrough in this field? These questions address the practical issues associated with the development of nanomaterial-based devices in applications areas such as solar cells, luminous devices for optical communication (detectors, lasers), and high mobility transistors. Investigation of silicon-based nanostructures is of great importance to make full use of nanomaterials for device applications. Readers will receive a comprehensive view of Si-based nanomaterials, which will hopefully stimulate interest in developing novel nanostructures or techniques to satisfy the requirements of high performance device applications. The goal is to make nanomaterials the main constituents of the high performance devices of the future. Describes today’s most promising approach to the full use of nanomaterials in device applications Provides the keys to understanding the integration of nanomaterials with silicon ICs Addresses both materials growth and properties Covers both silicon and non-silicon nanomaterials Written by leading experts in each research area.
650 0 _aMaterials science.
650 0 _aNanoscale science.
650 0 _aNanoscience.
650 0 _aNanostructures.
650 0 _aOptics.
650 0 _aOptoelectronics.
650 0 _aPlasmons (Physics).
650 0 _aNanotechnology.
650 0 _aOptical materials.
650 0 _aElectronic materials.
650 1 4 _aMaterials Science.
650 2 4 _aNanotechnology.
650 2 4 _aNanotechnology and Microengineering.
650 2 4 _aOptics, Optoelectronics, Plasmonics and Optical Devices.
650 2 4 _aOptical and Electronic Materials.
650 2 4 _aNanoscale Science and Technology.
700 1 _aLi, Handong.
_eeditor.
700 1 _aWu, Jiang.
_eeditor.
700 1 _aWang, Zhiming M.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461481683
830 0 _aSpringer Series in Materials Science,
_x0933-033X ;
_v187
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-8169-0
912 _aZDB-2-CMS
942 _2Dewey Decimal Classification
_ceBooks
999 _c44998
_d44998