000 03449nam a22005177a 4500
001 sulb-eb0023182
003 BD-SySUS
005 20160413122338.0
007 cr nn 008mamaa
008 130417s2013 gw | s |||| 0|eng d
020 _a9783319000749
_9978-3-319-00074-9
024 7 _a10.1007/978-3-319-00074-9
_2doi
050 4 _aQA76.889
050 4 _aTK7874.887
072 7 _aPHQ
_2bicssc
072 7 _aCOM032000
_2bisacsh
082 0 4 _a621.3
_223
100 1 _aDe Greve, Kristiaan.
_eauthor.
245 1 0 _aTowards Solid-State Quantum Repeaters
_h[electronic resource] :
_bUltrafast, Coherent Optical Control and Spin-Photon Entanglement in Charged InAs Quantum Dots /
_cby Kristiaan De Greve.
264 1 _aHeidelberg :
_bSpringer International Publishing :
_bImprint: Springer,
_c2013.
300 _aXVII, 148 p. 75 illus., 63 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
505 0 _aIntroduction -- Quantum Dot Spin Qubits -- Ultrafast Control of Electron Spins -- Hadamard Gate -- Geometric Phase Gates -- Hole Spin Qubits -- Spin-Photon Entanglement -- Conclusion and Outlook -- A: Fidelity Analysis -- B: Electron Spin-Nuclear Feedback -- C: Heavy-Hole-Light-Hole Mixing -- D: Coherent Hole Rotation Model -- E: Hole Spin Device Design -- F: Visibility of Quantum Erasure.
520 _aTowards Solid-State Quantum Repeaters: Ultrafast, Coherent Optical Control and Spin-Photon Entanglement in Charged InAs Quantum Dots summarizes several state-of-the-art coherent spin manipulation experiments in III-V quantum dots. Both high-fidelity optical manipulation, decoherence due to nuclear spins and the spin coherence extraction are discussed, as is the generation of entanglement between a single spin qubit and a photonic qubit. The experimental results are analyzed and discussed in the context of future quantum technologies, such as quantum repeaters. Single spins in optically active semiconductor host materials have emerged as leading candidates for quantum information processing (QIP). The quantum nature of the spin allows for encoding of stationary, memory quantum bits (qubits), and the relatively weak interaction with the host material preserves the spin coherence. On the other hand, optically active host materials permit direct interfacing with light, which can be used for all-optical qubit manipulation, and for efficiently mapping matter qubits into photonic qubits that are suited for long-distance quantum communication.
650 0 _aPhysics.
650 0 _aQuantum computers.
650 0 _aElementary particles (Physics).
650 0 _aQuantum field theory.
650 0 _aSpintronics.
650 1 4 _aPhysics.
650 2 4 _aQuantum Information Technology, Spintronics.
650 2 4 _aQuantum Computing.
650 2 4 _aElementary Particles, Quantum Field Theory.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319000732
830 0 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-00074-9
912 _aZDB-2-PHA
942 _2Dewey Decimal Classification
_ceBooks
999 _c45274
_d45274