000 03321nam a22005417a 4500
001 sulb-eb0023254
003 BD-SySUS
005 20160413122341.0
007 cr nn 008mamaa
008 130517s2013 gw | s |||| 0|eng d
020 _a9783319004075
_9978-3-319-00407-5
024 7 _a10.1007/978-3-319-00407-5
_2doi
050 4 _aQC176.8.A44
072 7 _aPHF
_2bicssc
072 7 _aSCI085000
_2bisacsh
072 7 _aSCI077000
_2bisacsh
082 0 4 _a530.41
_223
100 1 _aFantoni, Riccardo.
_eauthor.
245 1 4 _aThe Janus Fluid
_h[electronic resource] :
_bA Theoretical Perspective /
_cby Riccardo Fantoni.
264 1 _aHeidelberg :
_bSpringer International Publishing :
_bImprint: Springer,
_c2013.
300 _aX, 50 p. 14 illus., 4 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Physics,
_x2191-5423
505 0 _aWhat is a Janus Fluid? -- Introduction -- The Classical Statistical Physics Problem -- Experimental Methods -- Numerical Simulations -- Relationship between the Structure and the Thermodynamics -- The Phase Diagram of a Janus Fluid -- The Structure of a Janus Fluid -- Clustering and Micellization in a Janus Fluid -- Introduction -- The Kern and Frenkel Model -- Clustering Properties -- A Cluster Theory for Janus Particles -- Relationship between the Configurational Partition Functions -- Results.
520 _aThe state-of-the-art in the theoretical statistical physics treatment of the Janus fluid is reported with a bridge between new research results published in journal articles and a contextual literature review. Recent Monte Carlo simulations on the Kern and Frenkel model of the Janus fluid have revealed that in the vapor phase, below the critical point, there is the formation of preferred inert clusters made up of a well-defined number of particles: the micelles and the vesicles. This is responsible for a re-entrant gas branch of the gas-liquid binodal. Detailed account of this findings are given in the first chapter where the Janus fluid is introduced as a product of new sophisticated synthesis laboratory techniques. In the second chapter a cluster theory is developed to approximate the exact clustering properties stemming from the simulations. It is shown that the theory is able to reproduce semi-quantitatively the micellization phenomenon.
650 0 _aPhysics.
650 0 _aPhysical chemistry.
650 0 _aAmorphous substances.
650 0 _aComplex fluids.
650 0 _aStatistical physics.
650 0 _aDynamical systems.
650 1 4 _aPhysics.
650 2 4 _aSoft and Granular Matter, Complex Fluids and Microfluidics.
650 2 4 _aStatistical Physics, Dynamical Systems and Complexity.
650 2 4 _aPhysical Chemistry.
650 2 4 _aNumerical and Computational Physics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319004068
830 0 _aSpringerBriefs in Physics,
_x2191-5423
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-00407-5
912 _aZDB-2-PHA
942 _2Dewey Decimal Classification
_ceBooks
999 _c45346
_d45346