000 03141nam a22005177a 4500
001 sulb-eb0023891
003 BD-SySUS
005 20160413122413.0
007 cr nn 008mamaa
008 120823s2013 gw | s |||| 0|eng d
020 _a9783642309946
_9978-3-642-30994-6
024 7 _a10.1007/978-3-642-30994-6
_2doi
050 4 _aQA184-205
072 7 _aPBF
_2bicssc
072 7 _aMAT002050
_2bisacsh
082 0 4 _a512.5
_223
100 1 _aShafarevich, Igor R.
_eauthor.
245 1 0 _aLinear Algebra and Geometry
_h[electronic resource] /
_cby Igor R. Shafarevich, Alexey O. Remizov.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aXXII, 526 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aPreface -- Preliminaries -- 1. Linear Equations -- 2. Matrices and Determinants -- 3. Vector Spaces -- 4. Linear Transformations of a Vector Space to Itself -- 5. Jordan Normal Form -- 6. Quadratic and Bilinear Forms -- 7. Euclidean Spaces -- 8. Affine Spaces -- 9. Projective Spaces -- 10. The Exterior Product and Exterior Algebras -- 11. Quadrics -- 12. Hyperbolic Geometry -- 13. Groups, Rings, and Modules -- 14. Elements of Representation Theory -- Historical Note -- References -- Index.
520 _aThis book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
650 0 _aMathematics.
650 0 _aAlgebra.
650 0 _aAssociative rings.
650 0 _aRings (Algebra).
650 0 _aMatrix theory.
650 0 _aGeometry.
650 1 4 _aMathematics.
650 2 4 _aLinear and Multilinear Algebras, Matrix Theory.
650 2 4 _aAlgebra.
650 2 4 _aGeometry.
650 2 4 _aAssociative Rings and Algebras.
700 1 _aRemizov, Alexey O.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642309939
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-30994-6
912 _aZDB-2-SMA
942 _2Dewey Decimal Classification
_ceBooks
999 _c45983
_d45983