000 03392nam a22005657a 4500
001 sulb-eb0026472
003 BD-SySUS
005 20160413122651.0
007 cr nn 008mamaa
008 121116s2013 ne | s |||| 0|eng d
020 _a9789400753457
_9978-94-007-5345-7
024 7 _a10.1007/978-94-007-5345-7
_2doi
050 4 _aQC5.53
072 7 _aPHU
_2bicssc
072 7 _aSCI040000
_2bisacsh
082 0 4 _a530.15
_223
100 1 _aRudolph, Gerd.
_eauthor.
245 1 0 _aDifferential Geometry and Mathematical Physics
_h[electronic resource] :
_bPart I. Manifolds, Lie Groups and Hamiltonian Systems /
_cby Gerd Rudolph, Matthias Schmidt.
264 1 _aDordrecht :
_bSpringer Netherlands :
_bImprint: Springer,
_c2013.
300 _aXIV, 762 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aTheoretical and Mathematical Physics,
_x1864-5879
505 0 _a1 Differentiable manifolds --  2 Vector bundles --  3 Vector fields --  4 Differential forms --  5 Lie groups --  6 Lie group actions --  7 Linear symplectic algebra --  8 Symplectic geometry --  9 Hamiltonian systems --  10 Symmetries -- 11 Integrability -- 12 Hamilton-Jacobi theory --  References.
520 _aStarting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.
650 0 _aPhysics.
650 0 _aTopological groups.
650 0 _aLie groups.
650 0 _aGlobal analysis (Mathematics).
650 0 _aManifolds (Mathematics).
650 0 _aDifferential geometry.
650 0 _aMechanics.
650 1 4 _aPhysics.
650 2 4 _aMathematical Methods in Physics.
650 2 4 _aGlobal Analysis and Analysis on Manifolds.
650 2 4 _aMechanics.
650 2 4 _aTopological Groups, Lie Groups.
650 2 4 _aDifferential Geometry.
700 1 _aSchmidt, Matthias.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9789400753440
830 0 _aTheoretical and Mathematical Physics,
_x1864-5879
856 4 0 _uhttp://dx.doi.org/10.1007/978-94-007-5345-7
912 _aZDB-2-PHA
942 _2Dewey Decimal Classification
_ceBooks
999 _c48564
_d48564