000 14796cam a22003737i 4500
001 18977898
003 BD-SySUS
005 20230829163222.0
008 160216s2016 maua b 001 0 eng d
010 _a 2016933655
020 _a9780128053942
_celectronic bk
020 _a0128053941
035 _a(OCoLC)ocn947816755
040 _aBTCTA
_beng
_cBTCTA
_erda
_dYDX
_dOCLCO
_dGSU
_dISU
_dU3G
_dBUF
_dDLC
050 0 0 _aQA76.9.B45
_bB5565 2016
082 0 4 _a005.7
_223
245 0 0 _aBig data :
_bprinciples and paradigms /
_cedited by Rajkumar Buyya, The University of Melbourne and Manjrasoft Pty Ltd, Australia, Rodrigo N. Calheiros, The University of Melbourne, Australia, Amir Vahid Dastjerdi, The University of Melbourne, Australia.
264 1 _aCambridge, MA :
_bElsevier/Morgan Kaufmann,
_c[2016]
300 _axxv, 468 pages :
_billustrations ;
_c24 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 0 _aMachine generated contents note:
_gch. 1
_tBDA = ML + CC --
_g1.1.
_tIntroduction --
_g1.2.
_tA Historical Review of Big Data --
_g1.2.1.
_tThe Origin of Big Data --
_g1.2.2.
_tDebates of Big Data Implication --
_g1.3.
_tHistorical Interpretation of Big Data --
_g1.3.1.
_tMethodology for Defining Big Data --
_g1.3.2.
_tDifferent Attributes of Definitions --
_g1.3.3.
_tSummary of 7 Types Definitions of Big Data --
_g1.3.4.
_tMotivations Behind the Definitions --
_g1.4.
_tDefining Big Data From 3Vs to 32Vs --
_g1.4.1.
_tData Domain --
_g1.4.2.
_tBusiness Intelligent (BI) Domain --
_g1.4.3.
_tStatistics Domain --
_g1.4.4.
_t32 Vs Definition and Big Data Venn Diagram --
_g1.5.
_tBig Data Analytics and Machine Learning --
_g1.5.1.
_tBig Data Analytics --
_g1.5.2.
_tMachine Learning --
_g1.6.
_tBig Data Analytics and Cloud Computing --
_g1.7.
_tHadoop, HDFS, MapReduce, Spark, and Flink --
_g1.7.1.
_tGoogle File System (GFS) and HDFS --
_g1.7.2.
_tMapReduce --
_g1.7.3.
_tThe Origin of the Hadoop Project --
_g1.7.4.
_tSpark and Spark Stack --
_g1.7.5.
_tFlink and Other Data Process Engines --
_g1.7.6.
_tSummary of Hadoop and Its Ecosystems --
_g1.8.
_tML +CC -> BDA and Guidelines --
_g1.9.
_tConclusion --
_tReferences --
_gch. 2
_tReal-lime Analytics --
_g2.1.
_tIntroduction --
_g2.2.
_tComputing Abstractions for Real-Time Analytics --
_g2.3.
_tCharacteristics of Real-Time Systems --
_g2.3.1.
_tLow Latency --
_g2.3.2.
_tHigh Availability --
_g2.3.3.
_tHorizontal Scalability --
_g2.4.
_tReal-Time Processing for Big Data -- Concepts and Platforms --
_g2.4.1.
_tEvent --
_g2.4.2.
_tEvent Processing --
_g2.4.3.
_tEvent Stream Processing and Data Stream Processing --
_g2.4.4.
_tComplex Event Processing --
_g2.4.5.
_tEvent Type --
_g2.4.6.
_tEvent Pattern --
_g2.5.
_tData Stream Processing Platforms --
_g2.5.1.
_tSpark --
_g2.5.2.
_tStorm --
_g2.5.3.
_tKafka --
_g2.5.4.
_tFlume --
_g2.5.5.
_tAmazon Kinesis --
_g2.6.
_tData Stream Analytics Platforms --
_g2.6.1.
_tQuery-Based EPSs --
_g2.6.2.
_tRule-Oriented EPSs --
_g2.6.3.
_tProgrammatic EPSs --
_g2.7.
_tData Analysis and Analytic Techniques --
_g2.7.1.
_tData Analysis in General --
_g2.7.2.
_tData Analysis for Stream Applications --
_g2.8.
_tFinance Domain Requirements and a Case Study --
_g2.8.1.
_tReal-Time Analytics in Finance Domain --
_g2.8.2.
_tSelected Scenarios --
_g2.8.3.
_tCEP Application as a Case Study --
_g2.9.
_tFuture Research Challenges --
_tReferences --
_gch. 3
_tBig Data Analytics for Social Media --
_g3.1.
_tIntroduction --
_g3.2.
_tNLP and Its Applications --
_g3.2.1.
_tLanguage Detection --
_g3.2.2.
_tNamed Entity Recognition --
_g3.3.
_tText Mining --
_g3.3.1.
_tSentiment Analysis --
_g3.3.2.
_tTrending Topics --
_g3.3.3.
_tRecommender Systems --
_g3.4.
_tAnomaly Detection --
_tAcknowledgments --
_tReferences --
_gch. 4
_tDeep Learning and Its Parallelization --
_g4.1.
_tIntroduction --
_g4.1.1.
_tApplication Background --
_g4.1.2.
_tPerformance Demands for Deep Learning --
_g4.1.3.
_tExisting Parallel Frameworks of Deep Learning --
_g4.2.
_tConcepts and Categories of Deep Learning --
_g4.2.1.
_tDeep Learning --
_g4.2.2.
_tMainstream Deep Learning Models --
_g4.3.
_tParallel Optimization for Deep Learning --
_g4.3.1.
_tConvolutional Architecture for Fast Feature Embedding --
_g4.3.2.
_tDistBelief --
_g4.3.3.
_tDeep Learning Based on Multi-GPUs --
_g4.4.
_tDiscussions --
_g4.4.1.
_tGrand Challenges of Deep Learning in Big Data --
_g4.4.2.
_tFuture Directions --
_tReferences --
_gch. 5
_tCharacterization and Traversal of Large Real-World Networks --
_g5.1.
_tIntroduction --
_g5.2.
_tBackground --
_g5.3.
_tCharacterization and Measurement --
_g5.4.
_tEfficient Complex Network Traversal --
_g5.4.1.
_tHPC Traversal of Large Networks --
_g5.4.2.
_tAlgorithms for Accelerating AS-BFS on GPU --
_g5.4.3.
_tPerformance Study of AS-BFS on GPU's --
_g5.5.
_tk-Core-Based Partitioning for Heterogeneous Graph Processing --
_g5.5.1.
_tGraph Partitioning for Heterogeneous Computing --
_g5.5.2.
_tk-Core-Based Complex-Network Unbalanced Bisection --
_g5.6.
_tFuture Directions --
_g5.7.
_tConclusions --
_tAcknowledgments --
_tReferences --
_gch. 6
_tDatabase Techniques for Big Data --
_g6.1.
_tIntroduction --
_g6.2.
_tBackground --
_g6.2.1.
_tNavigational Data Models --
_g6.2.2.
_tRelational Data Models --
_g6.3.
_tNoSQL Movement --
_g6.4.
_tNoSQL Solutions for Big Data Management --
_g6.5.
_tNoSQL Data Models --
_g6.5.1.
_tKey-Value Stores --
_g6.5.2.
_tColumn-Based Stores --
_g6.5.3.
_tGraph-Based Stores --
_g6.5.4.
_tDocument-Based Stores --
_g6.6.
_tFuture Directions --
_g6.7.
_tConclusions --
_tReferences --
_gch. 7
_tResource Management in Big Data Processing Systems --
_g7.1.
_tIntroduction --
_g7.2.
_tTypes of Resource Management --
_g7.2.1.
_tCPU and Memory Resource Management --
_g7.2.2.
_tStorage Resource Management --
_g7.2.3.
_tNetwork Resource Management --
_g7.3.
_tBig Data Processing Systems and Platforms --
_g7.3.1.
_tHadoop --
_g7.3.2.
_tDryad --
_g7.3.3.
_tPregel --
_g7.3.4.
_tStorm --
_g7.3.5.
_tSpark --
_g7.3.6.
_tSummary --
_g7.4.
_tSingle-Resource Management in the Cloud --
_g7.4.1.
_tDesired Resource Allocation Properties --
_g7.4.2.
_tProblems for Existing Fairness Policies --
_g7.4.3.
_tLong-Term Resource Allocation Policy --
_g7.4.4.
_tExperimental Evaluation --
_g7.5.
_tMultiresource Management in the Cloud --
_g7.5.1.
_tResource Allocation Model --
_g7.5.2.
_tMultiresource Fair Sharing Issues --
_g7.5.3.
_tReciprocal Resource Fairness --
_g7.5.4.
_tExperimental Evaluation --
_g7.6.
_tRelated Work on Resource Management --
_g7.6.1.
_tResource Utilization Optimization --
_g7.6.2.
_tPower and Energy Cost Saving Optimization --
_g7.6.3.
_tMonetary Cost Optimization --
_g7.6.4.
_tFairness Optimization --
_g7.7.
_tOpen Problems --
_g7.7.1.
_tSLA Guarantee for Applications --
_g7.7.2.
_tVarious Computation Models and Systems --
_g7.7.3.
_tExploiting Emerging Hardware --
_g7.8.
_tSummary --
_tReferences --
_gch. 8
_tLocal Resource Consumption Shaping: A Case for MapReduce --
_g8.1.
_tIntroduction --
_g8.2.
_tMotivation --
_g8.2.1.
_tPitfalls of Fair Resource Sharing --
_g8.3.
_tLocal Resource Shaper --
_g8.3.1.
_tDesign Philosophy --
_g8.3.2.
_tSplitter --
_g8.3.3.
_tThe Interleave MapReduce Scheduler --
_g8.4.
_tEvaluation --
_g8.4.1.
_tExperiments With Hadoop 1.x --
_g8.4.2.
_tExperiments With Hadoop 2.x --
_g8.5.
_tRelated Work --
_g8.6.
_tConclusions --
_tAppendix CPU Utilization With Different Slot Configurations and LRS --
_tReferences --
_gch. 9
_tSystem Optimization for Big Data Processing --
_g9.1.
_tIntroduction --
_g9.2.
_tBasic Framework of the Hadoop Ecosystem --
_g9.3.
_tParallel Computation Framework: MapReduce --
_g9.3.1.
_tImprovements of MapReduce Framework --
_g9.3.2.
_tOptimization for Task Scheduling and Load Balancing of MapReduce --
_g9.4.
_tJob Scheduling of Hadoop --
_g9.4.1.
_tBuilt-In Scheduling Algorithms of Hadoop --
_g9.4.2.
_tImprovement of the Hadoop Job Scheduling Algorithm --
_g9.4.3.
_tImprovement of the Hadoop Job Management Framework --
_g9.5.
_tPerformance Optimization of HDFS --
_g9.5.1.
_tSmall File Performance Optimization --
_g9.5.2.
_tHDFS Security Optimization --
_g9.6.
_tPerformance Optimization of HBase --
_g9.6.1.
_tHBase Framework, Storage, and Application Optimization --
_g9.6.2.
_tLoad Balancing of HBase --
_g9.6.3.
_tOptimization of HBase Configuration --
_g9.7.
_tPerformance Enhancement of Hadoop System --
_g9.7.1.
_tEfficiency Optimization of Hadoop --
_g9.7.2.
_tAvailability Optimization of Hadoop --
_g9.8.
_tConclusions and Future Directions --
_tReferences --
_gch. 10
_tPacking Algorithms for Big Data Replay on Multicore --
_g10.1.
_tIntroduction --
_g10.2.
_tPerformance Bottlenecks --
_g10.2.1.
_tHadoop/MapReduce Performance Bottlenecks --
_g10.2.2.
_tPerformance Bottlenecks Under Parallel Loads --
_g10.2.3.
_tParameter Spaces for Storage and Shared Memory --
_g10.2.4.
_tMain Storage Performance --
_g10.2.5.
_tShared Memory Performance --
_g10.3.
_tThe Big Data Replay Method --
_g10.3.1.
_tThe Replay Method --
_g10.3.2.
_tJobs as Sketches on a Timeline --
_g10.3.3.
_tPerformance Bottlenecks Under Replay --
_g10.4.
_tPacking Algorithms --
_g10.4.1.
_tShared Memory Performance Tricks --
_g10.4.2.
_tBig Data Replay at Scale --
_g10.4.3.
_tPractical Packing Models --
_g10.5.
_tPerformance Analysis --
_g10.5.1.
_tHotspot Distributions --
_g10.5.2.
_tModeling Methodology --
_g10.5.3.
_tProcessing Overhead Versus Bottlenecks --
_g10.5.4.
_tControl Grain for Drop Versus Drag Models --
_g10.6.
_tSummary and Future Directions --
_tReferences --
_gch. 11
_tSpatial Privacy Challenges in Social Networks --
_g11.1.
_tIntroduction --
_g11.2.
_tBackground --
_g11.3.
_tSpatial Aspects of Social Networks --
_g11.4.
_tCloud-Based Big Data Infrastructure --
_g11.5.
_tSpatial Privacy Case Studies --
_g11.6.
_tConclusions --
_tAcknowledgments --
_tReferences --
_gch. 12
_tSecurity and Privacy in Big Data --
_g12.1.
_tIntroduction --
_g12.2.
_tSecure Queries Over Encrypted Big Data --
_g12.2.1.
_tSystem Model --
_g12.2.2.
_tThreat Model and Attack Model --
_g12.2.3.
_tSecure Query Scheme in Clouds --
_g12.2.4.
_tSecurity Definition of Index-Based Secure Query Techniques --
_g12.2.5.
_tImplementations of Index-Based Secure Query Techniques --
_g12.3.
_tOther Big Data Security --
_g12.3.1.
_tDigital Watermarking --
_g12.3.2.
_tSelf-Adaptive Risk Access Control --
_g12.4.
_tPrivacy on Correlated Big Data --
_g12.4.1.
_tCorrelated Data in Big Data --
_g12.4.2.
_tAnonymity --
_g12.4.3.
_tDifferential Privacy --
_g12.5.
_tFuture Directions --
_g12.6.
_tConclusions --
_tReferences --
_gch. 13
_tLocation Inferring in Internet of Things and Big Data --
_g13.1.
_tIntroduction --
_g13.2.
_tDevice-Based Sensing Using Big Data --
_g13.2.1.
_tIntroduction --
_g13.2.2.
_tApproach Overview --
_g13.2.3.
_tTrajectories Matching --
_g13.2.4.
_tEstablishing the Mapping Between Floor Plan and RSS Readings --
_g13.2.5.
_tUser Localization --
_g13.2.6.
_tGraph Matching Based Tracking --
_g13.2.7.
_tEvaluation --
_g13.3.
_tDevice-Free Sensing Using Big Data --
_g13.3.1.
_tCustomer Behavior Identification --
_g13.3.2.
_tHuman Object Estimation
505 0 0 _aNote continued:
_g13.4.
_tConclusion --
_tAcknowledgements --
_tReferences --
_gch. 14
_tA Framework for Mining Thai Public Opinions --
_g14.1.
_tIntroduction --
_g14.2.
_tXDOM --
_g14.2.1.
_tData Sources --
_g14.2.2.
_tDOM System Architecture --
_g14.2.3.
_tMapReduce Framework --
_g14.2.4.
_tSentiment Analysis --
_g14.2.5.
_tClustering-Based Summarization Framework --
_g14.2.6.
_tInfluencer Analysis --
_g14.2.7.
_tAsKDOM: Mobile Application --
_g14.3.
_tImplementation --
_g14.3.1.
_tServer --
_g14.3.2.
_tCore Service --
_g14.3.3.
_tI/O --
_g14.4.
_tValidation --
_g14.4.1.
_tValidation Parameter --
_g14.4.2.
_tValidation method --
_g14.4.3.
_tValidation results --
_g14.5.
_tCase Studies --
_g14.5.1.
_tPolitical Opinion: #prayforthailand --
_g14.5.2.
_tBangkok Traffic Congestion Ranking --
_g14.6.
_tSummary and Conclusions --
_tAcknowledgments --
_tReferences --
_gch. 15
_tA Case Study in Big Data Analytics: Exploring Twitter Sentiment Analysis and the Weather --
_g15.1.
_tBackground --
_g15.2.
_tBig Data System Components --
_g15.2.1.
_tSystem Back-End Architecture --
_g15.2.2.
_tSystem Front-End Architecture --
_g15.2.3.
_tSoftware Stack --
_g15.3.
_tMachine-Learning Methodology --
_g15.3.1.
_tTweets Sentiment Analysis --
_g15.3.2.
_tWeather and Emotion Correlation Analysis --
_g15.4.
_tSystem Implementation --
_g15.4.1.
_tHome Page --
_g15.4.2.
_tSentiment Pages --
_g15.4.3.
_tWeather Pages --
_g15.5.
_tKey Findings --
_g15.5.1.
_tTime Series --
_g15.5.2.
_tAnalysis with Hourly Weather Data --
_g15.5.3.
_tAnalysis with Daily Weather Data --
_g15.5.4.
_tDBSCAN Cluster Algorithm --
_g15.5.5.
_tStraightforward Weather Impact on Emotion --
_g15.6.
_tSummary and Conclusions --
_tAcknowledgments --
_tReferences --
_gch. 16
_tDynamic Uncertainty-Based Analytics for Caching Performance Improvements in Mobile Broadband Wireless Networks --
_g16.1.
_tIntroduction --
_g16.1.1.
_tBig Data Concerns --
_g16.1.2.
_tKey Focus Areas --
_g16.2.
_tBackground --
_g16.2.1.
_tCellular Network and VoD --
_g16.2.2.
_tMarkov Processes --
_g16.3.
_tRelated Work --
_g16.4.
_tVoD Architecture --
_g16.5.
_tOverview --
_g16.6.
_tData Generation --
_g16.7.
_tEdge and Core Components --
_g16.8.
_tINCA Caching Algorithm --
_g16.9.
_tQoE Estimation --
_g16.10.
_tTheoretical Framework --
_g16.11.
_tExperiments and Results --
_g16.11.1.
_tCache Hits With Nu, Nc, Nm and k --
_g16.11.2.
_tQoE Impact With Prefetch Bandwidth --
_g16.11.3.
_tUser Satisfaction With Prefetch Bandwidth --
_g16.12.
_tSynthetic Dataset --
_g16.12.1.
_tINCA Hit Gain --
_g16.12.2.
_tQoE Performance --
_g16.12.3.
_tSatisfied Users --
_g16.13.
_tConclusions and Future Directions --
_tReferences --
_gch. 17
_tBig Data Analytics on a Smart Grid: Mining PMU Data for Event and Anomaly Detection --
_g17.1.
_tIntroduction --
_g17.2.
_tSmart Grid With PMUs and PDCs --
_g17.3.
_tImproving Traditional Workflow --
_g17.4.
_tCharacterizing Normal Operation --
_g17.5.
_tIdentifying Unusual Phenomena --
_g17.6.
_tIdentifying Known Events --
_g17.7.
_tRelated Efforts --
_g17.8.
_tConclusion and Future Directions --
_tAcknowledgments --
_tReferences --
_gch. 18
_teScience and Big Data Workflows in Clouds: A Taxonomy and Survey --
_g18.1.
_tIntroduction --
_g18.2.
_tBackground --
_g18.2.1.
_tHistory --
_g18.2.2.
_tGrid-Based eScience --
_g18.2.3.
_tCloud Computing --
_g18.3.
_tTaxonomy and Review of eScience Services in the Cloud --
_g18.3.1.
_tInfrastructure --
_g18.3.2.
_tOwnership --
_g18.3.3.
_tApplication --
_g18.3.4.
_tProcessing Tools --
_g18.3.5.
_tStorage --
_g18.3.6.
_tSecurity --
_g18.3.7.
_tService Models --
_g18.3.8.
_tCollaboration --
_g18.4.
_tResource Provisioning for eScience Workflows in Clouds --
_g18.4.1.
_tMotivation --
_g18.4.2.
_tOur Solution --
_g18.5.
_tOpen Problems --
_g18.6.
_tSummary --
_tReferences.
650 0 _aBig data.
_963678
650 1 _aBig data.
_963679
650 7 _aBig data.
_2fast
_0(OCoLC)fst01892965
_963680
700 1 _aBuyya, Rajkumar,
_d1970-
_eeditor.
_963681
700 1 _aCalheiros, Rodrigo N.,
_eeditor.
_963682
700 1 _aDastjerdi, Amir Vahid,
_eeditor.
_963683
856 _3ELSEVIER
_uhttps://www.sciencedirect.com/book/9780128053942/big-data
942 _2ddc
_cEBK
999 _c85023
_d85023