Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Introduction to Queueing Systems with Telecommunication Applications [electronic resource] / by Laszlo Lakatos, Laszlo Szeidl, Miklos Telek.

By: Contributor(s): Material type: TextTextPublisher: Boston, MA : Springer US : Imprint: Springer, 2013Description: XII, 388 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781461453178
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 519.2 23
LOC classification:
  • QA273.A1-274.9
  • QA274-274.9
Online resources:
Contents:
Preface -- Introduction to probability theory -- Introduction to stochastic processes -- Markov chains -- Renewal and regenerative processes -- Markov chains with special structures -- Introduction to queueing systems -- Markovian queueing systems -- Non-Markovian queueing systems -- Queueing systems with structured Markov chains -- Queueing networks -- Applied queueing systems -- Functions and transforms -- Exercises -- References.-.
In: Springer eBooksSummary: The book is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self containing introduction to the stochastic processes of the later studies queueing systems. It starts with a quick introduction to probability theory and stochastic processes and continues with chapters on Markov chains and regenerative processes. More recent advances of queueing systems are based on phase type distributions, Markov arrival processes and quasy birth death processes, which are introduced in the last chapter of the first part.  The second part is devoted to queueing models and their applications. After the introduction of the basic Markovian (from M/M/1 to M/M/1//N) and non-Markovian (M/G/1, G/M/1) queueing systems, a chapter presents the analysis of queues with  phase type distributions, Markov arrival processes (from PH/M/1 to MAP/PH/1/K). The next chapter presents the classical queueing network results and the rest of this part is devoted to the application examples. There are queueing models for bandwidth charing with different traffic classes, slotted multiplexers, ATM switches, media access protocols like Aloha and IEEE 802.11b, priority systems and retrial systems.  An appendix supplements the technical content with Laplace and z transformation rules, Bessel functions and a list of notations. The book contains examples and exercises throughout and could be used for graduate students in engineering, mathematics and sciences.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Preface -- Introduction to probability theory -- Introduction to stochastic processes -- Markov chains -- Renewal and regenerative processes -- Markov chains with special structures -- Introduction to queueing systems -- Markovian queueing systems -- Non-Markovian queueing systems -- Queueing systems with structured Markov chains -- Queueing networks -- Applied queueing systems -- Functions and transforms -- Exercises -- References.-.

The book is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self containing introduction to the stochastic processes of the later studies queueing systems. It starts with a quick introduction to probability theory and stochastic processes and continues with chapters on Markov chains and regenerative processes. More recent advances of queueing systems are based on phase type distributions, Markov arrival processes and quasy birth death processes, which are introduced in the last chapter of the first part.  The second part is devoted to queueing models and their applications. After the introduction of the basic Markovian (from M/M/1 to M/M/1//N) and non-Markovian (M/G/1, G/M/1) queueing systems, a chapter presents the analysis of queues with  phase type distributions, Markov arrival processes (from PH/M/1 to MAP/PH/1/K). The next chapter presents the classical queueing network results and the rest of this part is devoted to the application examples. There are queueing models for bandwidth charing with different traffic classes, slotted multiplexers, ATM switches, media access protocols like Aloha and IEEE 802.11b, priority systems and retrial systems.  An appendix supplements the technical content with Laplace and z transformation rules, Bessel functions and a list of notations. The book contains examples and exercises throughout and could be used for graduate students in engineering, mathematics and sciences.

There are no comments on this title.

to post a comment.