Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

A Rapid Introduction to Adaptive Filtering [electronic resource] / by Leonardo Rey Vega, Hernan Rey.

By: Contributor(s): Material type: TextTextSeries: SpringerBriefs in Electrical and Computer EngineeringPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: XII, 122 p. 23 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642302992
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.382 23
LOC classification:
  • TK5102.9
  • TA1637-1638
  • TK7882.S65
Online resources:
Contents:
Wiener Filtering and examples -- Steepest descent procedure -- Stochastic gradient adaptive filtering: LMS (Least Mean Squares), NLMS (Normalized Mean Squares) -- Sign-error algorithm, APA (Affine Projection Algorithms) -- Convergence results -- Applications -- LS (Least Squares) and RLS (Recursive Least Squares) -- Computational complexity and fast implementations -- Applications.
In: Springer eBooksSummary: In this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative methods for solving the optimization problem, e.g., the Method of Steepest Descent. By proposing stochastic approximations, several basic adaptive algorithms are derived, including Least Mean Squares (LMS), Normalized Least Mean Squares (NLMS) and Sign-error algorithms. The authors provide a general framework to study the stability and steady-state performance of these algorithms. The affine Projection Algorithm (APA) which provides faster convergence at the expense of computational complexity (although fast implementations can be used) is also presented. In addition, the Least Squares (LS) method and its recursive version (RLS), including fast implementations are discussed. The book closes with the discussion of several topics of interest in the adaptive filtering field.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Wiener Filtering and examples -- Steepest descent procedure -- Stochastic gradient adaptive filtering: LMS (Least Mean Squares), NLMS (Normalized Mean Squares) -- Sign-error algorithm, APA (Affine Projection Algorithms) -- Convergence results -- Applications -- LS (Least Squares) and RLS (Recursive Least Squares) -- Computational complexity and fast implementations -- Applications.

In this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative methods for solving the optimization problem, e.g., the Method of Steepest Descent. By proposing stochastic approximations, several basic adaptive algorithms are derived, including Least Mean Squares (LMS), Normalized Least Mean Squares (NLMS) and Sign-error algorithms. The authors provide a general framework to study the stability and steady-state performance of these algorithms. The affine Projection Algorithm (APA) which provides faster convergence at the expense of computational complexity (although fast implementations can be used) is also presented. In addition, the Least Squares (LS) method and its recursive version (RLS), including fast implementations are discussed. The book closes with the discussion of several topics of interest in the adaptive filtering field.

There are no comments on this title.

to post a comment.