Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Photoinduced Modifications of the Nonlinear Optical Response in Liquid Crystalline Azopolymers [electronic resource] / by Raquel Alicante.

By: Contributor(s): Material type: TextTextSeries: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: XX, 200 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642317569
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.36 23
LOC classification:
  • TA1671-1707
  • TA1501-1820
Online resources:
Contents:
Introduction and Basic Theory -- Experimental Methods.- Nonlinear Optical Molecular Response -- Piperazine Azopolymer Thin Films -- Films of Doped Low Polar Azopolymers -- Nonlinear Optical Gratings -- General Conclusions -- Appendices.
In: Springer eBooksSummary: Nonlinear optical (NLO) phenomena such as frequency conversion have played a key role in the development of photonic technologies. This thesis reports a detailed study of the molecular response of a large variety of push-pull organic compounds using the Second Harmonic Generation technique, which will serve as a starting point for the investigation at the macroscopic scale of azobenzene-based liquid crystalline polymeric films and their blends with highly efficient NLO chromophores. These materials are designed with the aim of exploiting their photo-addressability in order to tailor their nonlinear behaviour. The magnitude and symmetry of their nonlinear response was successfully controlled via light irradiation and thermal treatments. Moreover, as a specific application, the recording of efficient NLO gratings was achieved and is described here.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction and Basic Theory -- Experimental Methods.- Nonlinear Optical Molecular Response -- Piperazine Azopolymer Thin Films -- Films of Doped Low Polar Azopolymers -- Nonlinear Optical Gratings -- General Conclusions -- Appendices.

Nonlinear optical (NLO) phenomena such as frequency conversion have played a key role in the development of photonic technologies. This thesis reports a detailed study of the molecular response of a large variety of push-pull organic compounds using the Second Harmonic Generation technique, which will serve as a starting point for the investigation at the macroscopic scale of azobenzene-based liquid crystalline polymeric films and their blends with highly efficient NLO chromophores. These materials are designed with the aim of exploiting their photo-addressability in order to tailor their nonlinear behaviour. The magnitude and symmetry of their nonlinear response was successfully controlled via light irradiation and thermal treatments. Moreover, as a specific application, the recording of efficient NLO gratings was achieved and is described here.

There are no comments on this title.

to post a comment.