Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Study and Design of Differential Microphone Arrays [electronic resource] / by Jacob Benesty, Jingdong Chen.

By: Contributor(s): Material type: TextTextSeries: Springer Topics in Signal Processing ; 6Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: VIII, 184 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642337536
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.382 23
LOC classification:
  • TK5102.9
  • TA1637-1638
  • TK7882.S65
Online resources:
Contents:
Introduction -- Problem Formulation -- Study and Design of First-Order Differential Arrays -- Study and Design of Second-Order Differential Arrays -- Study and Design of Third-Order Differential Arrays with Three Distinct Nulls -- Minimum-Norm Solution for Robust Differential Arrays -- Study and Design of Differential Arrays with the MacLaurin’s Series Approximation.
In: Springer eBooksSummary: Microphone arrays have attracted a lot of interest over the last few decades since they have the potential to solve many important problems such as noise reduction/speech enhancement, source separation, dereverberation, spatial sound recording, and source localization/tracking, to name a few. However, the design and implementation of microphone arrays with beamforming algorithms is not a trivial task when it comes to processing broadband signals such as speech. Indeed, in most sensor arrangements, the beamformer tends to have a frequency-dependent response. One exception, perhaps, is the family of differential microphone arrays (DMAs) that have the promise to form frequency-independent responses. Moreover, they have the potential to attain high directional gains with small and compact apertures. As a result, this type of microphone arrays has drawn much research and development attention recently. This book is intended to provide a systematic study of DMAs from a signal processing perspective. The primary objective is to develop a rigorous but yet simple theory for the design, implementation, and performance analysis of DMAs.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Problem Formulation -- Study and Design of First-Order Differential Arrays -- Study and Design of Second-Order Differential Arrays -- Study and Design of Third-Order Differential Arrays with Three Distinct Nulls -- Minimum-Norm Solution for Robust Differential Arrays -- Study and Design of Differential Arrays with the MacLaurin’s Series Approximation.

Microphone arrays have attracted a lot of interest over the last few decades since they have the potential to solve many important problems such as noise reduction/speech enhancement, source separation, dereverberation, spatial sound recording, and source localization/tracking, to name a few. However, the design and implementation of microphone arrays with beamforming algorithms is not a trivial task when it comes to processing broadband signals such as speech. Indeed, in most sensor arrangements, the beamformer tends to have a frequency-dependent response. One exception, perhaps, is the family of differential microphone arrays (DMAs) that have the promise to form frequency-independent responses. Moreover, they have the potential to attain high directional gains with small and compact apertures. As a result, this type of microphone arrays has drawn much research and development attention recently. This book is intended to provide a systematic study of DMAs from a signal processing perspective. The primary objective is to develop a rigorous but yet simple theory for the design, implementation, and performance analysis of DMAs.

There are no comments on this title.

to post a comment.