Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Enzymatic Transformation [electronic resource] / by Soundar Divakar.

By: Contributor(s): Material type: TextTextPublisher: India : Springer India : Imprint: Springer, 2013Description: XX, 284 p. 398 illus., 14 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9788132208730
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 572 23
LOC classification:
  • QH345
  • QD415-436
Online resources:
Contents:
Preface -- Abstract of Chapters -- Introduction -- Glycosidases -- Lipases.-Enzymatic Esterification of Compounds Possessing Multifunctional Hydroxyl and Carboxyl Groups -- Enzymatic Polymerization -- Lipase Catalyzed Preparation of Aminoacyl Esters of Carbohydrates -- Enzymatic Glycosylation of Alcohols -- Glycosylation of Some Selected Phenols and Vitamins -- Glycosylation of Phenols and Vitamins.– An Overview -- Kinetics of Some Selected Enzyme Catalyzed Reactions in Organic Solvents -- ACE Inhibition and Antioxidant Activities of Enzymatically Synthesized Aminoacyl Esters And Glycosides.
In: Springer eBooksSummary: Transformations using enzymes have been extensively investigated in the last two decades and the results promise great potential for this growing field, especially in the area of synthetic organic chemistry mainly due to of its many advantages.  Accordingly, this book has attempted to bring out the advantages of using enzymes involving complex underivatized and unprotected substrates in non-polar media under homogenous and heterogeneous reaction conditions. Merits and demerits of using enzymes in terms of yields and selectivity/specificity are presented without any prejudice. Almost all the reactions dealt with are from the author’s laboratory comprising diverse substrates, and the catalysis involves two important hydrolyzing enzymes, extensively examined for the reverse reactions. Thus, esterification involving lipses and glycosylation involving glycosidases were investigated with respect to various strategies like optimization of reaction conditions, response surface methodology and  kinetics,  carrying out reactions under solvent, non-solvent and super critical carbon dioxide  conditions. In short, the work presented is to ensure the comprehension of the problems faced by the researchers in this area so as to work out further efficient strategies for carrying out enzymatic transformations  in the laboratory successfully with better yields and specificity.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Preface -- Abstract of Chapters -- Introduction -- Glycosidases -- Lipases.-Enzymatic Esterification of Compounds Possessing Multifunctional Hydroxyl and Carboxyl Groups -- Enzymatic Polymerization -- Lipase Catalyzed Preparation of Aminoacyl Esters of Carbohydrates -- Enzymatic Glycosylation of Alcohols -- Glycosylation of Some Selected Phenols and Vitamins -- Glycosylation of Phenols and Vitamins.– An Overview -- Kinetics of Some Selected Enzyme Catalyzed Reactions in Organic Solvents -- ACE Inhibition and Antioxidant Activities of Enzymatically Synthesized Aminoacyl Esters And Glycosides.

Transformations using enzymes have been extensively investigated in the last two decades and the results promise great potential for this growing field, especially in the area of synthetic organic chemistry mainly due to of its many advantages.  Accordingly, this book has attempted to bring out the advantages of using enzymes involving complex underivatized and unprotected substrates in non-polar media under homogenous and heterogeneous reaction conditions. Merits and demerits of using enzymes in terms of yields and selectivity/specificity are presented without any prejudice. Almost all the reactions dealt with are from the author’s laboratory comprising diverse substrates, and the catalysis involves two important hydrolyzing enzymes, extensively examined for the reverse reactions. Thus, esterification involving lipses and glycosylation involving glycosidases were investigated with respect to various strategies like optimization of reaction conditions, response surface methodology and  kinetics,  carrying out reactions under solvent, non-solvent and super critical carbon dioxide  conditions. In short, the work presented is to ensure the comprehension of the problems faced by the researchers in this area so as to work out further efficient strategies for carrying out enzymatic transformations  in the laboratory successfully with better yields and specificity.

There are no comments on this title.

to post a comment.