Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

An Introduction to Statistical Learning with Applications in R / by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani.

By: Contributor(s): Material type: TextTextPublisher: New York, NY : Springer New York : Imprint: Springer, 2013Description: XIV, 426 p. 150 illus., 146 illus. in colorContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781461471387
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 519.5 23 JAI
LOC classification:
  • QA276-280
Contents:
Introduction -- Statistical Learning -- Linear Regression -- Classification -- Resampling Methods -- Linear Model Selection and Regularization -- Moving Beyond Linearity -- Tree-Based Methods -- Support Vector Machines -- Unsupervised Learning -- Index.
In: Springer eBooksSummary: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Introduction -- Statistical Learning -- Linear Regression -- Classification -- Resampling Methods -- Linear Model Selection and Regularization -- Moving Beyond Linearity -- Tree-Based Methods -- Support Vector Machines -- Unsupervised Learning -- Index.

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

There are no comments on this title.

to post a comment.