Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

All-Optical Noninvasive Delayed Feedback Control of Semiconductor Lasers [electronic resource] / by Sylvia Schikora.

By: Contributor(s): Material type: TextTextPublisher: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2013Description: XIX, 118 p. 59 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783658015404
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.36 23
LOC classification:
  • TA1671-1707
  • TA1501-1820
Online resources:
Contents:
 All-Optical Control Setup -- Stable States with Resonant Fabry-Perot Feedback -- Control of an Unstable Stationary State -- Control of Unstable Self-Pulsations -- Controlling Chaos -- Control of a Torsionfree Orbit.
In: Springer eBooksSummary: The stabilization of unstable states hidden in the dynamics of a system, in particular the control of chaos, has received much attention in the last years. Sylvia Schikora for the first time applies a well-known control method called delayed feedback control entirely in the all-optical domain. A multisection semiconductor laser receives optical feedback from an external Fabry-Perot interferometer. The control signal is a phase-tunable superposition of the laser signal and provokes the laser to operate in an otherwise unstable periodic state with a period equal to the time delay. The control is noninvasive, because the reflected signal tends to zero when the target state is reached.   The work has been awarded the Carl-Ramsauer-Prize 2012.   Contents ·         All-Optical Control Setup ·         Stable States with Resonant Fabry-Perot Feedback ·         Control of an Unstable Stationary State and of Unstable Selfpulsations ·         Controlling Chaos ·         Control of a Torsionfree Orbit   Target Groups   ·         Researchers and students of nonlinear dynamics or semiconductor laser technology, interested in the application of control synchronization in the GHz range ·         Practitioners in the field of optical telecommunication     The author Dr. Sylvia Schikora completed her doctoral thesis on ultrafast noninvasive control of semiconductor lasers at the Department of Physics, Humboldt University of Berlin. She currently works at Humboldt University as a postdoctoral researcher with a focus on optical metrology.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

 All-Optical Control Setup -- Stable States with Resonant Fabry-Perot Feedback -- Control of an Unstable Stationary State -- Control of Unstable Self-Pulsations -- Controlling Chaos -- Control of a Torsionfree Orbit.

The stabilization of unstable states hidden in the dynamics of a system, in particular the control of chaos, has received much attention in the last years. Sylvia Schikora for the first time applies a well-known control method called delayed feedback control entirely in the all-optical domain. A multisection semiconductor laser receives optical feedback from an external Fabry-Perot interferometer. The control signal is a phase-tunable superposition of the laser signal and provokes the laser to operate in an otherwise unstable periodic state with a period equal to the time delay. The control is noninvasive, because the reflected signal tends to zero when the target state is reached.   The work has been awarded the Carl-Ramsauer-Prize 2012.   Contents ·         All-Optical Control Setup ·         Stable States with Resonant Fabry-Perot Feedback ·         Control of an Unstable Stationary State and of Unstable Selfpulsations ·         Controlling Chaos ·         Control of a Torsionfree Orbit   Target Groups   ·         Researchers and students of nonlinear dynamics or semiconductor laser technology, interested in the application of control synchronization in the GHz range ·         Practitioners in the field of optical telecommunication     The author Dr. Sylvia Schikora completed her doctoral thesis on ultrafast noninvasive control of semiconductor lasers at the Department of Physics, Humboldt University of Berlin. She currently works at Humboldt University as a postdoctoral researcher with a focus on optical metrology.

There are no comments on this title.

to post a comment.