Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Fluidization of Fine Powders [electronic resource] : Cohesive versus Dynamical Aggregation / by José Manuel Valverde Millán.

By: Contributor(s): Material type: TextTextSeries: Particle Technology Series ; 18Publisher: Dordrecht : Springer Netherlands : Imprint: Springer, 2013Description: XVI, 136 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789400755871
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 530.41 23
LOC classification:
  • QC176.8.A44
Online resources:
Contents:
Dedication -- Preface -- Acknowledgements -- Acronyms -- 1 Introduction. The classical Geldart’s diagram and the new type of gas-fluidization behavior -- 2 The structure of Geldart A gas-fluidized beds -- 3 Magnetic stabilization of fluidized beds of magnetizable particles -- 4 The fluidlike behavior of granular materials fluidized by liquids -- 5 The fluidlike behavior of some fine and ultrafine powders fluidized by gas -- 6 On the question of fluidlike fluidization stability -- 7 Dynamic aggregation of fine particles in gas-fluidized beds -- 8 The modified Geldart’s diagram -- 9 Fluidization of nanopowders -- 10 Effect of gas viscosity on the fluidization behavior of fine powders -- 11 Fluidlike fluidization as affected by external fields -- 12 The use of additives to control powder flow. Mechanical properties of fine powder beds -- 13 Fluidization assistance techniques.
In: Springer eBooksSummary: This book will be mainly devoted to demonstrate the rich phenomenology exhibited by fine powders when they are fluidized by a gas flow. Fine powder cohesiveness leads to poor flowability, clumping, difficulty in fluidizing, irregular avalanching behavior, etc. Despite all the inconveniences, fine powder processes pervade the chemical, pharmaceutical, agricultural and mining industries among others. The author in this book analyzes the mechanism by which interparticle adhesive forces are reduced by means of surface additives. Different techniques have been developed in the last years to assist fluidization by helping the gas flow to mobilize and break cohesive aggregates, which help to homogenize fluidization. As reviewed in this book, the use of these techniques may have a relevant impact on novel processes based on fluidized beds of fine powder and with relevant applications on leading edge technologies such as Atomic Layer Deposition on nanoparticles and CO2 capture by gas-fluidized beds of adsorbent powders. The study of fluidized beds has a marked interdisciplinary character.  This book is thus intended for academic and industrial researchers in applied physics, mechanical, chemical, and environmental engineering, who are interested in the special characteristics of fine powders.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Dedication -- Preface -- Acknowledgements -- Acronyms -- 1 Introduction. The classical Geldart’s diagram and the new type of gas-fluidization behavior -- 2 The structure of Geldart A gas-fluidized beds -- 3 Magnetic stabilization of fluidized beds of magnetizable particles -- 4 The fluidlike behavior of granular materials fluidized by liquids -- 5 The fluidlike behavior of some fine and ultrafine powders fluidized by gas -- 6 On the question of fluidlike fluidization stability -- 7 Dynamic aggregation of fine particles in gas-fluidized beds -- 8 The modified Geldart’s diagram -- 9 Fluidization of nanopowders -- 10 Effect of gas viscosity on the fluidization behavior of fine powders -- 11 Fluidlike fluidization as affected by external fields -- 12 The use of additives to control powder flow. Mechanical properties of fine powder beds -- 13 Fluidization assistance techniques.

This book will be mainly devoted to demonstrate the rich phenomenology exhibited by fine powders when they are fluidized by a gas flow. Fine powder cohesiveness leads to poor flowability, clumping, difficulty in fluidizing, irregular avalanching behavior, etc. Despite all the inconveniences, fine powder processes pervade the chemical, pharmaceutical, agricultural and mining industries among others. The author in this book analyzes the mechanism by which interparticle adhesive forces are reduced by means of surface additives. Different techniques have been developed in the last years to assist fluidization by helping the gas flow to mobilize and break cohesive aggregates, which help to homogenize fluidization. As reviewed in this book, the use of these techniques may have a relevant impact on novel processes based on fluidized beds of fine powder and with relevant applications on leading edge technologies such as Atomic Layer Deposition on nanoparticles and CO2 capture by gas-fluidized beds of adsorbent powders. The study of fluidized beds has a marked interdisciplinary character.  This book is thus intended for academic and industrial researchers in applied physics, mechanical, chemical, and environmental engineering, who are interested in the special characteristics of fine powders.

There are no comments on this title.

to post a comment.