Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

The Finite Element Method: Theory, Implementation, and Applications [electronic resource] / by Mats G. Larson, Fredrik Bengzon.

By: Contributor(s): Material type: TextTextSeries: Texts in Computational Science and Engineering ; 10Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: XVII, 395 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642332876
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 004 23
LOC classification:
  • QA71-90
Online resources:
Contents:
1. Piecewise Polynomial Approximation in 1D -- 2. The Finite Element Method in 1D -- 3. Piecewise Polynomial Approximation in 2D -- 4. The Finite Element Method in 2D -- 5. Time-dependent Problems -- 6. Solving Large Sparse Linear Systems -- 7. Abstract Finite Element Analysis -- 8. The Finite Element -- 9. Non-linear Problems -- 10. Transport Problems -- 11. Solid Mechanics -- 12. Fluid Mechanics -- 13. Electromagnetics -- 14. Discontinuous Galerkin Methods -- A. Some Additional Matlab Code -- References.
In: Springer eBooksSummary: This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.     .
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1. Piecewise Polynomial Approximation in 1D -- 2. The Finite Element Method in 1D -- 3. Piecewise Polynomial Approximation in 2D -- 4. The Finite Element Method in 2D -- 5. Time-dependent Problems -- 6. Solving Large Sparse Linear Systems -- 7. Abstract Finite Element Analysis -- 8. The Finite Element -- 9. Non-linear Problems -- 10. Transport Problems -- 11. Solid Mechanics -- 12. Fluid Mechanics -- 13. Electromagnetics -- 14. Discontinuous Galerkin Methods -- A. Some Additional Matlab Code -- References.

This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.     .

There are no comments on this title.

to post a comment.