Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Physics of the Upper Polar Atmosphere [electronic resource] / by Asgeir Brekke.

By: Contributor(s): Material type: TextTextSeries: Springer Atmospheric SciencesPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: XXVI, 386 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642274015
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 333.7 23
LOC classification:
  • GE1-350
Online resources:
Contents:
1. The Sun as a radiation source -- 1.1 General about the Sun  -- 1.2 The solar atmosphere -- 1.3 The electromagnetic radiation from the Sun  -- 1.4 Planck’s radiation law -- 1.5 The greenhouse effect -- 1.6 Radiowave emissions from the Sun.-1.7 The sunspots - Solar cycle.-1.8 The electromagnetic radiation from the disturbed Sun.-    1.9 Particle emissions from the quiet Sun.-1.10 Fluid flow in a nozzle -- 1.11 The solar wind equation -- 1.12 The frozen-in field concept  1.13 The garden hose effect -- 1.14 Exercises.- 2. The atmosphere of the Earth 2.1 Nomenclature -- 2.2 The temperature structure of the atmosphere -- 2.3 Atmospheric drag on satellites --   2.4 The atmosphere as an ideal gas -- 2.5 The exosphere -- 2.6 Height-dependent temperature -- 2.7 The adiabatic lapse rate.- 2.8 Diffusion -- 2.9 The equation of motion of the neutral gas -- 2.10 The geostrophic and thermal winds -- 2.11 The wind systems of the upper atmosphere.- 2.12 Observations of the neutral wind -- 2.13 Collisions between particles -- 2.14 Collisions in gases with different temperatures -- 2.15 Drag effects -- 2.16 Thermospheric neutral winds -- 2.17 The E-region winds -- 2.18 Observations of E-region neutral winds -- 2.19 The vertical motion -- 2.20 Exercises -- 3. The Earth's magnetic field and magnetosphere -- 3.1 An historical introduction -- 3.2 Description of the Earth's magnetic field -- 3.3 Mathematical representation of the Earth's magnetic system -- 3.4 Secular variations in the Earth's magnetic field -- 3.5 Tracing the magnetic field lines -- 3.6 E-field mapping along conducting magnetic field lines -- 3.7 The source of the magnetic field of the Earth -- 3.8 The unipolar inductor.- 3.9 The magnetic field away from the Earth.-  3.10 The magnetic tail -- 3.11 Magnetic field merging -- 3.12 Effects of the magnetic force -- 3.13 The energy flux into the magnetosphere.-3.14 Some aspects of the energy balance -- 3.15 Magnetic field convection -- 3.16 High-latitude convection patterns and field-aligned currents 3.17 Exercises  -- 4. The ionosphere -- 4.1 The production of ionization by solar radiation -- 4.2 The ionization profile of the upper atmosphere -- 4.3 The Chapman ionization profile -- 4.4 The recombination process -- 4.5 The O+ dominant ionosphere -- 4.6 Ambipolar diffusion -- 4.7 Multicomponent topside ionosphere -- 4.8 Diffusion in the presence of a magnetic field -- 4.9 The E-layer ionization and recombination -- 4.10 The time constant of the recombination process.-4.11 The D-region ionization and recombination -- 4.12 Equatorial fountain effect -- 4.13 Ferraro's theorem -- 4.14 The magnetospheric convection close to the Earth  4.15 Exercises .-5 Currents in the ionosphere -- 5.1 The steady-state approach -- 5.2 Rotation of the ion velocity by height in the ionosphere -- 5.3 The current density in the ionosphere -- 5.4 Height-dependent currents and heating rates -- 5.5 Heating due to collisions -- 5.6 Heating of an oscillating electric field -- 5.7 Currents due to gravity and diffusion -- 5.8 Exercises.- 6. Magnetic fluctuations in response to height-integrated currents -- 6.1 Height-integrated currents and conductance -- 6.2 Magnetic field fluctuations from auroral currents --   6.3 Equivalent current systems -- 6.4 Equivalent currents at different latitudes -- 6.5 The Sq current system -- 6.6 Mapping of E-fields in the ionosphere -- 6.7 Polarization fields around an auroral arc -- 6.8 Currents related to an auroral arc -- 6.9 Exercises -- 7 The aurora --   7.1 An historical introduction -- 7.2 The height of the aurora -- 7.3 The occurrence frequency of the aurora -- 7.4 The global distribution of the aurora -- 7.5 The auroral appearance -- 7.6 Auroral particles -- 7.7 Precipitation patterns of auroral particles -- 7.8 The energy deposition profiles of auroral particles -- 7.9 Deriving energy spectra from electron density profiles -- 7.10 Excitation processes in the aurora.-7.11 The quenching process -- 7.12 The proton aurora -- 7.13 Exercises  References  Symbols  Index.
In: Springer eBooksSummary: This is the  only  extended textbook that covers in particular the physics of the upper polar atmosphere where the polar lights demonstrates the end product of a process taking place at extremely high latitudes between the solar wind and the upper polar atmosphere. A textboook that meets the modern requriement for reading in order to obtain a master of science or a Dr. of science degree in  upper polar atmosphere physics or the interaction between the soalr wind and the Earth's atmosphere.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1. The Sun as a radiation source -- 1.1 General about the Sun  -- 1.2 The solar atmosphere -- 1.3 The electromagnetic radiation from the Sun  -- 1.4 Planck’s radiation law -- 1.5 The greenhouse effect -- 1.6 Radiowave emissions from the Sun.-1.7 The sunspots - Solar cycle.-1.8 The electromagnetic radiation from the disturbed Sun.-    1.9 Particle emissions from the quiet Sun.-1.10 Fluid flow in a nozzle -- 1.11 The solar wind equation -- 1.12 The frozen-in field concept  1.13 The garden hose effect -- 1.14 Exercises.- 2. The atmosphere of the Earth 2.1 Nomenclature -- 2.2 The temperature structure of the atmosphere -- 2.3 Atmospheric drag on satellites --   2.4 The atmosphere as an ideal gas -- 2.5 The exosphere -- 2.6 Height-dependent temperature -- 2.7 The adiabatic lapse rate.- 2.8 Diffusion -- 2.9 The equation of motion of the neutral gas -- 2.10 The geostrophic and thermal winds -- 2.11 The wind systems of the upper atmosphere.- 2.12 Observations of the neutral wind -- 2.13 Collisions between particles -- 2.14 Collisions in gases with different temperatures -- 2.15 Drag effects -- 2.16 Thermospheric neutral winds -- 2.17 The E-region winds -- 2.18 Observations of E-region neutral winds -- 2.19 The vertical motion -- 2.20 Exercises -- 3. The Earth's magnetic field and magnetosphere -- 3.1 An historical introduction -- 3.2 Description of the Earth's magnetic field -- 3.3 Mathematical representation of the Earth's magnetic system -- 3.4 Secular variations in the Earth's magnetic field -- 3.5 Tracing the magnetic field lines -- 3.6 E-field mapping along conducting magnetic field lines -- 3.7 The source of the magnetic field of the Earth -- 3.8 The unipolar inductor.- 3.9 The magnetic field away from the Earth.-  3.10 The magnetic tail -- 3.11 Magnetic field merging -- 3.12 Effects of the magnetic force -- 3.13 The energy flux into the magnetosphere.-3.14 Some aspects of the energy balance -- 3.15 Magnetic field convection -- 3.16 High-latitude convection patterns and field-aligned currents 3.17 Exercises  -- 4. The ionosphere -- 4.1 The production of ionization by solar radiation -- 4.2 The ionization profile of the upper atmosphere -- 4.3 The Chapman ionization profile -- 4.4 The recombination process -- 4.5 The O+ dominant ionosphere -- 4.6 Ambipolar diffusion -- 4.7 Multicomponent topside ionosphere -- 4.8 Diffusion in the presence of a magnetic field -- 4.9 The E-layer ionization and recombination -- 4.10 The time constant of the recombination process.-4.11 The D-region ionization and recombination -- 4.12 Equatorial fountain effect -- 4.13 Ferraro's theorem -- 4.14 The magnetospheric convection close to the Earth  4.15 Exercises .-5 Currents in the ionosphere -- 5.1 The steady-state approach -- 5.2 Rotation of the ion velocity by height in the ionosphere -- 5.3 The current density in the ionosphere -- 5.4 Height-dependent currents and heating rates -- 5.5 Heating due to collisions -- 5.6 Heating of an oscillating electric field -- 5.7 Currents due to gravity and diffusion -- 5.8 Exercises.- 6. Magnetic fluctuations in response to height-integrated currents -- 6.1 Height-integrated currents and conductance -- 6.2 Magnetic field fluctuations from auroral currents --   6.3 Equivalent current systems -- 6.4 Equivalent currents at different latitudes -- 6.5 The Sq current system -- 6.6 Mapping of E-fields in the ionosphere -- 6.7 Polarization fields around an auroral arc -- 6.8 Currents related to an auroral arc -- 6.9 Exercises -- 7 The aurora --   7.1 An historical introduction -- 7.2 The height of the aurora -- 7.3 The occurrence frequency of the aurora -- 7.4 The global distribution of the aurora -- 7.5 The auroral appearance -- 7.6 Auroral particles -- 7.7 Precipitation patterns of auroral particles -- 7.8 The energy deposition profiles of auroral particles -- 7.9 Deriving energy spectra from electron density profiles -- 7.10 Excitation processes in the aurora.-7.11 The quenching process -- 7.12 The proton aurora -- 7.13 Exercises  References  Symbols  Index.

This is the  only  extended textbook that covers in particular the physics of the upper polar atmosphere where the polar lights demonstrates the end product of a process taking place at extremely high latitudes between the solar wind and the upper polar atmosphere. A textboook that meets the modern requriement for reading in order to obtain a master of science or a Dr. of science degree in  upper polar atmosphere physics or the interaction between the soalr wind and the Earth's atmosphere.

There are no comments on this title.

to post a comment.