Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Bio-inspired Asymmetric Design and Building of Biomimetic Smart Single Nanochannels [electronic resource] / by Xu Hou.

By: Contributor(s): Material type: TextTextSeries: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: XIII, 127 p. 78 illus., 67 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642380501
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 620.115 23
LOC classification:
  • T174.7
  • TA418.9.N35
Online resources:
Contents:
Introduction -- Ions Responsive Asymmetric Conical Shaped Single Nanochannel -- Asymmetric pH-Gating Symmetric Hour-Glass Shaped Single Nanochannel -- Asymmetric Temperature/pH Dual-Responsive Symmetric Hour-Glass Shaped Single Nanochannel -- Asymmetric Conical Shaped Single Composite Nanochannel Materials.
In: Springer eBooksSummary: In this thesis, the author introduces various bio-inspired smart nanochannel systems. A strategy for design and preparation of novel artificial responsive symmetric/asymmetric single nanochannel systems under various symmetric/asymmetric stimuli is presented for the first time. The author’s research work utilizes ion track etching polymer nanochannels with different shapes as examples to demonstrate the feasibility of the design strategy for building novel artificial functional nanochannels using various symmetric/asymmetric physicochemical modifications. The development of these nanochannels and their potential applications is a burgeoning new area of research, and a number of exciting breakthroughs may be anticipated in the near future from the concepts and results reported in this thesis. Research into artificial functional nanochannels continues to drive new developments of various real-world applications, such as biosensors, energy conversion systems and nanofluidic devices. The work in this thesis has led to more than 15 publications in high-profile journals.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Ions Responsive Asymmetric Conical Shaped Single Nanochannel -- Asymmetric pH-Gating Symmetric Hour-Glass Shaped Single Nanochannel -- Asymmetric Temperature/pH Dual-Responsive Symmetric Hour-Glass Shaped Single Nanochannel -- Asymmetric Conical Shaped Single Composite Nanochannel Materials.

In this thesis, the author introduces various bio-inspired smart nanochannel systems. A strategy for design and preparation of novel artificial responsive symmetric/asymmetric single nanochannel systems under various symmetric/asymmetric stimuli is presented for the first time. The author’s research work utilizes ion track etching polymer nanochannels with different shapes as examples to demonstrate the feasibility of the design strategy for building novel artificial functional nanochannels using various symmetric/asymmetric physicochemical modifications. The development of these nanochannels and their potential applications is a burgeoning new area of research, and a number of exciting breakthroughs may be anticipated in the near future from the concepts and results reported in this thesis. Research into artificial functional nanochannels continues to drive new developments of various real-world applications, such as biosensors, energy conversion systems and nanofluidic devices. The work in this thesis has led to more than 15 publications in high-profile journals.

There are no comments on this title.

to post a comment.