Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Fundamentals of Geophysical Hydrodynamics [electronic resource] / by Felix V. Dolzhansky.

By: Contributor(s): Material type: TextTextSeries: Encyclopaedia of Mathematical Sciences ; 103Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: XIV, 274 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642310348
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 519 23
LOC classification:
  • QC19.2-20.85
Online resources:
Contents:
Preface -- Part I Main Principles and Laws of Motion of an Ideal Fluid -- Part II Quasi-geostrophic Approximations of the Equations of Motion of Rotating Barotropic and Baroclinic Fluids -- Part III Hydrodynamic Stability and Atmospheric Dynamics -- Part IV Friction in Geophysical Boundary Layers and Their Models -- Part V Mechanical Prototypes of Equations of Motion of a Rotating Stratified Fluid and a Toy Model of Atmospheric Circulation -- Part VI Appendices -- Index.
In: Springer eBooksSummary: This newly-translated book takes the reader from the basic principles and conservation laws of hydrodynamics to the description of general atmospheric circulation. Among the topics covered are the Kelvin, Ertel and Rossby-Obukhov invariants, quasi-geostrophic equation, thermal wind, singular Helmholtz vortices, derivation of the Navier-Stokes equation, Kolmogorov's flow, hydrodynamic stability, and geophysical boundary layers. Generalizing V. Arnold's approach to hydrodynamics, the author ingeniously brings in an analogy of Coriolis forces acting on fluid with  motion of the Euler heavy top and shows how this is used  in the analysis of general atmospheric circulation. This book is based on popular graduate and undergraduate courses given by F.V.Dolzhansky at the Moscow Institute of Physics and Technology, and is the result of the author's highly acclaimed work in Moscow's  Laboratory of Geophysical Hydrodynamics. Each chapter is full of examples and figures, exercises and hints, motivating and illustrating both theoretical and experimental results. The exposition is comprehensive yet user-friendly in engaging and exploring the broad range of topics for students and researchers in mathematics, physics, meteorology and engineering.  This book is based on popular graduate and undergraduate courses given by F.V.Dolzhansky at the Moscow Institute of Physics and Technology, and is the result of the author's highly acclaimed work in Moscow's  Laboratory of Geophysical Hydrodynamics. Each chapter is full of examples and figures, exercises and hints, motivating and illustrating both theoretical and experimental results. The exposition is comprehensive yet user-friendly in engaging and exploring the broad range of topics for students and researchers in mathematics, physics, meteorology and engineering. .
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Preface -- Part I Main Principles and Laws of Motion of an Ideal Fluid -- Part II Quasi-geostrophic Approximations of the Equations of Motion of Rotating Barotropic and Baroclinic Fluids -- Part III Hydrodynamic Stability and Atmospheric Dynamics -- Part IV Friction in Geophysical Boundary Layers and Their Models -- Part V Mechanical Prototypes of Equations of Motion of a Rotating Stratified Fluid and a Toy Model of Atmospheric Circulation -- Part VI Appendices -- Index.

This newly-translated book takes the reader from the basic principles and conservation laws of hydrodynamics to the description of general atmospheric circulation. Among the topics covered are the Kelvin, Ertel and Rossby-Obukhov invariants, quasi-geostrophic equation, thermal wind, singular Helmholtz vortices, derivation of the Navier-Stokes equation, Kolmogorov's flow, hydrodynamic stability, and geophysical boundary layers. Generalizing V. Arnold's approach to hydrodynamics, the author ingeniously brings in an analogy of Coriolis forces acting on fluid with  motion of the Euler heavy top and shows how this is used  in the analysis of general atmospheric circulation. This book is based on popular graduate and undergraduate courses given by F.V.Dolzhansky at the Moscow Institute of Physics and Technology, and is the result of the author's highly acclaimed work in Moscow's  Laboratory of Geophysical Hydrodynamics. Each chapter is full of examples and figures, exercises and hints, motivating and illustrating both theoretical and experimental results. The exposition is comprehensive yet user-friendly in engaging and exploring the broad range of topics for students and researchers in mathematics, physics, meteorology and engineering.  This book is based on popular graduate and undergraduate courses given by F.V.Dolzhansky at the Moscow Institute of Physics and Technology, and is the result of the author's highly acclaimed work in Moscow's  Laboratory of Geophysical Hydrodynamics. Each chapter is full of examples and figures, exercises and hints, motivating and illustrating both theoretical and experimental results. The exposition is comprehensive yet user-friendly in engaging and exploring the broad range of topics for students and researchers in mathematics, physics, meteorology and engineering. .

There are no comments on this title.

to post a comment.