Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Nonabelian Jacobian of Projective Surfaces [electronic resource] : Geometry and Representation Theory / by Igor Reider.

By: Contributor(s): Material type: TextTextSeries: Lecture Notes in Mathematics ; 2072Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: VIII, 227 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642356629
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 516.35 23
LOC classification:
  • QA564-609
Online resources:
Contents:
1 Introduction -- 2 Nonabelian Jacobian J(X; L; d): main properties -- 3 Some properties of the filtration H -- 4 The sheaf of Lie algebras G -- 5 Period maps and Torelli problems -- 6 sl2-structures on F -- 7 sl2-structures on G -- 8 Involution on G -- 9 Stratification of T -- 10 Configurations and theirs equations -- 11 Representation theoretic constructions -- 12 J(X; L; d) and the Langlands Duality.
In: Springer eBooksSummary: The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups. This work’s main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an efficient tool for using the representation theory to systematically address various algebro-geometric problems. It also shows how to construct new invariants of representation theoretic origin on smooth projective surfaces.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1 Introduction -- 2 Nonabelian Jacobian J(X; L; d): main properties -- 3 Some properties of the filtration H -- 4 The sheaf of Lie algebras G -- 5 Period maps and Torelli problems -- 6 sl2-structures on F -- 7 sl2-structures on G -- 8 Involution on G -- 9 Stratification of T -- 10 Configurations and theirs equations -- 11 Representation theoretic constructions -- 12 J(X; L; d) and the Langlands Duality.

The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups. This work’s main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an efficient tool for using the representation theory to systematically address various algebro-geometric problems. It also shows how to construct new invariants of representation theoretic origin on smooth projective surfaces.

There are no comments on this title.

to post a comment.