Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites [electronic resource] / by Andrei Stalmashonak, Gerhard Seifert, Amin Abdolvand.

By: Contributor(s): Material type: TextTextSeries: SpringerBriefs in PhysicsPublisher: Heidelberg : Springer International Publishing : Imprint: Springer, 2013Description: XII, 70 p. 38 illus., 36 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319004372
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.36 23
LOC classification:
  • QC350-467
  • TA1501-1820
  • QC392-449.5
  • TA1750-1750.22
Online resources:
Contents:
Introduction -- Optical Properties of Nanocomposites Containing Metal Nanoparticles -- Interaction of Ultra-Short Laser Pulses with Metal Nanoparticles Incorporated in Dielectric Media -- Effect of Pulse Intensity and Writing Density on Nanoparticle Shape -- "Off-Resonant" Excitation: Irradiation Wavelength Dependence -- The Effect of Temperature on the Laser-Induced Modifications of Ag Nanoparticles -- Ultra-Short Pulsed Laser Engineering of Metal-Glass Nanocomposites -- Conclusions.
In: Springer eBooksSummary: Glasses containing metallic nanoparticles exhibit very promising linear and nonlinear optical properties, mainly due to the surface plasmon resonances (SPRs) of the nanoparticles. The spectral position in the visible and near-infrared range and polarization dependence of the SPR are characteristically determined by the nanoparticles’ shapes. The focus of Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites is the interaction of intense ultra-short laser pulses with glass containing silver nanoparticles embedded in soda-lime glass, and nanostructural modifications in metal-glass nanocomposites induced by such laser pulses. In order to provide a comprehensive physical picture of the processes leading to laser-induced persistent shape transformation of the nanoparticles, series of experimental results investigating the dependences of laser assisted shape modifications of nanoparticles with laser pulse intensity, excitation wavelength, temperature are considered. In addition, the resulting local optical dichroism allows producing very flexibly polarizing optical (sub-) microstructures with well-specified optical properties. The achieved considerable progress towards technological application of this technique, in particular also for long-term optical data storage, is also discussed.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Optical Properties of Nanocomposites Containing Metal Nanoparticles -- Interaction of Ultra-Short Laser Pulses with Metal Nanoparticles Incorporated in Dielectric Media -- Effect of Pulse Intensity and Writing Density on Nanoparticle Shape -- "Off-Resonant" Excitation: Irradiation Wavelength Dependence -- The Effect of Temperature on the Laser-Induced Modifications of Ag Nanoparticles -- Ultra-Short Pulsed Laser Engineering of Metal-Glass Nanocomposites -- Conclusions.

Glasses containing metallic nanoparticles exhibit very promising linear and nonlinear optical properties, mainly due to the surface plasmon resonances (SPRs) of the nanoparticles. The spectral position in the visible and near-infrared range and polarization dependence of the SPR are characteristically determined by the nanoparticles’ shapes. The focus of Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites is the interaction of intense ultra-short laser pulses with glass containing silver nanoparticles embedded in soda-lime glass, and nanostructural modifications in metal-glass nanocomposites induced by such laser pulses. In order to provide a comprehensive physical picture of the processes leading to laser-induced persistent shape transformation of the nanoparticles, series of experimental results investigating the dependences of laser assisted shape modifications of nanoparticles with laser pulse intensity, excitation wavelength, temperature are considered. In addition, the resulting local optical dichroism allows producing very flexibly polarizing optical (sub-) microstructures with well-specified optical properties. The achieved considerable progress towards technological application of this technique, in particular also for long-term optical data storage, is also discussed.

There are no comments on this title.

to post a comment.