Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

From Atom Optics to Quantum Simulation [electronic resource] : Interacting Bosons and Fermions in Three-Dimensional Optical Lattice Potentials / by Sebastian Will.

By: Contributor(s): Material type: TextTextSeries: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: XVIII, 258 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642336331
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 539 23
LOC classification:
  • QC175.16.C6
Online resources:
Contents:
Towards Strongly Interacting Bosons and Fermions -- Hubbard Models for Bosons and Fermions -- Detection and Observables -- Experimental Apparatus -- Interacting Fermions in Optical Lattice Potentials -- Quantum Phase Revival Spectroscopy and Multi-body Interactions -- Interacting Mixtures of Bosons and Fermions in Optical Lattice Potentials -- Coherent Interaction of a Single Fermion with a Small Bosonic Field.
In: Springer eBooksSummary: This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision.  This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Towards Strongly Interacting Bosons and Fermions -- Hubbard Models for Bosons and Fermions -- Detection and Observables -- Experimental Apparatus -- Interacting Fermions in Optical Lattice Potentials -- Quantum Phase Revival Spectroscopy and Multi-body Interactions -- Interacting Mixtures of Bosons and Fermions in Optical Lattice Potentials -- Coherent Interaction of a Single Fermion with a Small Bosonic Field.

This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision.  This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.

There are no comments on this title.

to post a comment.