Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

A Guide to the Classification Theorem for Compact Surfaces [electronic resource] / by Jean Gallier, Dianna Xu.

By: Contributor(s): Material type: TextTextSeries: Geometry and Computing ; 9Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: XII, 178 p. 78 illus., 20 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642343643
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 514 23
LOC classification:
  • QA611-614.97
Online resources:
Contents:
The Classification Theorem: Informal Presentation -- Surfaces -- Simplices, Complexes, and Triangulations -- The Fundamental Group, Orientability -- Homology Groups -- The Classification Theorem for Compact Surfaces -- Viewing the Real Projective Plane in R3 -- Proof of Proposition 5.1 -- Topological Preliminaries -- History of the Classification Theorem -- Every Surface Can be Triangulated -- Notes .
In: Springer eBooksSummary: This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a comprehensive insight into the subject. Its dedicated, student-centred approach details a near-complete proof of this theorem, widely admired for its efficacy and formal beauty. The authors present the technical tools needed to deploy the method effectively as well as demonstrating their use in a clearly structured, worked example. Ideal for students whose mastery of algebraic topology may be a work-in-progress, the text introduces key notions such as fundamental groups, homology groups, and the Euler-Poincaré characteristic. These prerequisites are the subject of detailed appendices that enable focused, discrete learning where it is required, without interrupting the carefully planned structure of the core exposition. Gently guiding readers through the principles, theory, and applications of the classification theorem, the authors aim to foster genuine confidence in its use and in so doing encourage readers to move on to a deeper exploration of the versatile and valuable techniques available in algebraic topology.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

The Classification Theorem: Informal Presentation -- Surfaces -- Simplices, Complexes, and Triangulations -- The Fundamental Group, Orientability -- Homology Groups -- The Classification Theorem for Compact Surfaces -- Viewing the Real Projective Plane in R3 -- Proof of Proposition 5.1 -- Topological Preliminaries -- History of the Classification Theorem -- Every Surface Can be Triangulated -- Notes .

This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a comprehensive insight into the subject. Its dedicated, student-centred approach details a near-complete proof of this theorem, widely admired for its efficacy and formal beauty. The authors present the technical tools needed to deploy the method effectively as well as demonstrating their use in a clearly structured, worked example. Ideal for students whose mastery of algebraic topology may be a work-in-progress, the text introduces key notions such as fundamental groups, homology groups, and the Euler-Poincaré characteristic. These prerequisites are the subject of detailed appendices that enable focused, discrete learning where it is required, without interrupting the carefully planned structure of the core exposition. Gently guiding readers through the principles, theory, and applications of the classification theorem, the authors aim to foster genuine confidence in its use and in so doing encourage readers to move on to a deeper exploration of the versatile and valuable techniques available in algebraic topology.

There are no comments on this title.

to post a comment.