Advanced characterization techniques for thin film solar cells / edited by Daniel Abou-Ras, Thomas Kirchartz, and Uwe Rau.
Material type: TextPublication details: Weinheim, Germany : Wiley-VCH, ©2011.Description: 1 online resource (xxxvi, 547 pages) : illustrations (some color)Content type:- text
- computer
- online resource
- 9783527636303
- 3527636307
- 9783527636280
- 3527636285
- 9783527636297
- 3527636293
- 9783527636310
- 3527636315
- 621.472 22
- TK8322 .A38 2011eb
Includes bibliographical references and index.
Machine generated contents note: pt. one Introduction -- 1. Introduction to Thin-Film Photovoltaics / Uwe Rau -- 1.1. Introduction -- 1.2. The Photovoltaic Principle -- 1.2.1. The Shockley-Queisser Theory -- 1.2.2. From the Ideal Solar Cell to Real Solar Cells -- 1.2.3. Light Absorption and Light Trapping -- 1.2.4. Charge Extraction -- 1.2.5. Nonradiative Recombination -- 1.3. Functional Layers in Thin-Film Solar Cells -- 1.4. Comparison of Various Thin-Film Solar-Cell Types -- 1.4.1. Cu(In, Ga)Se2 -- 1.4.1.1. Basic Properties and Technology -- 1.4.1.2. Layer-Stacking Sequence and Band Diagram of the Heterostructure -- 1.4.2. CdTe -- 1.4.2.1. Basic Properties and Technology -- 1.4.2.2. Layer-Stacking Sequence and Band Diagram of the Heterostructure -- 1.4.3. Thin-Film Silicon Solar Cells -- 1.4.3.1. Hydrogenated Amorphous Si (a-Si: H) -- 1.4.3.2. Metastability in a-Si: H: The Staebler-Wronski Effect -- 1.4.3.3. Hydrogenated Microcrystalline Silicon (& mu;c-Si: H) -- 1.4.3.4. Micromorph Tandem Solar Cells.
1.5. Conclusions -- References -- pt. Two Device Characterization -- 2. Fundamental Electrical Characterization of Thin-Film Solar Cells / Uwe Rau -- 2.1. Introduction -- 2.2. Current/Voltage Curves -- 2.2.1. Shape of Current/Voltage Curves and their Description with Equivalent Circuit Models -- 2.2.2. Measurement of Current/Voltage Curves -- 2.2.3. Determination of Ideality Factors and Series Resistances -- 2.2.4. Temperature-Dependent Current/Voltage Measurements -- 2.3. Quantum Efficiency Measurements -- 2.3.1. Definition -- 2.3.2. Measurement Principle and Calibration -- 2.3.3. Quantum Efficiency Measurements of Tandem Solar Cells -- 2.3.4. Differential Spectral Response (DSR) Measurements -- 2.3.5. Interpretation of Quantum Efficiency Measurements in Thin-Film Silicon Solar Cells -- References -- 3. Electroluminescence Analysis of Solar Cells and Solar Modules / Uwe Rau -- 3.1. Introduction -- 3.2. Basics -- 3.3. Spectrally Resolved Electroluminescence -- 3.4. Spatially Resolved Electroluminescence of c-Si Solar Cells -- 3.5. Electroluminescence Imaging of Cu(In, Ga)Se2 Thin-Film Modules.
3.6. Modeling of Spatially Resolved Electroluminescence -- References -- 4. Capacitance Spectroscopy of Thin-Film Solar Cells / Pawel Zabierowski -- 4.1. Introduction -- 4.2. Admittance Basics -- 4.3. Sample Requirements -- 4.4. Instrumentation -- 4.5. Capacitance-Voltage Profiling and the Depletion Approximation -- 4.6. Admittance Response of Deep States -- 4.7. The Influence of Deep States on CV Profiles -- 4.8. DLTS -- 4.8.1. DLTS of Thin-Film PV Devices -- 4.9. Admittance Spectroscopy -- 4.10. Drive Level Capacitance Profiling -- 4.11. Photocapacitance -- 4.12. The Meyer-Neldel Rule -- 4.13. Spatial Inhomogeneities and Interface States -- 4.14. Metastability -- References -- pt. Three Materials Characterization -- 5. Characterizing the Light-Trapping Properties of Textured Surfaces with Scanning Near-Field Optical Microscopy / Karsten Bittkau -- 5.1. Introduction -- 5.2. How Does a Scanning Near-Field Optical Microscope Work? -- 5.3. Light Scattering in the Wave Picture -- 5.4. The Role of Evanescent Modes for Light Trapping -- 5.5. Analysis of Scanning Near-Field Optical Microscopy Images by Fast Fourier Transformation.
5.6. How to Extract Far-Field Scattering Properties by Scanning Near-Field Optical Microscopy? -- 5.7. Conclusion -- References -- 6. Spectroscopic Ellipsometry / Robert W. Collins -- 6.1. Introduction -- 6.2. Theory -- 6.2.1. Polarized Light -- 6.2.2. Reflection from a Single Interface -- 6.3. Ellipsometry Instrumentation -- 6.3.1. Rotating Analyzer SE for Ex-Situ Applications -- 6.3.2. Rotating Compensator SE for Real-Time Applications -- 6.4. Data Analysis -- 6.4.1. Exact Numerical Inversion -- 6.4.2. Least-Squares Regression -- 6.4.3. Virtual Interface Analysis -- 6.5. RTSE of Thin Film Photovoltaics -- 6.5.1. Thin Si: H -- 6.5.2. CdTe -- 6.5.3. CuInSe2 -- 6.6. Summary and Future -- 6.7. Definition of Variables -- References -- 7. Photoluminescence Analysis of Thin-Film Solar Cells / Levent Gutay -- 7.1. Introduction -- 7.2. Experimental Issues -- 7.2.1. Design of the Optical System -- 7.2.2. Calibration -- 7.2.3. Cryostat -- 7.3. Basic Transitions -- 7.3.1. Excitons -- 7.3.2. Free-Bound Transitions -- 7.3.3. Donor-Acceptor Pair Recombination -- 7.3.4. Potential Fluctuations.
7.3.5. Band-Band Transitions -- 7.4. Case Studies -- 7.4.1. Low-Temperature Photoluminescence Analysis -- 7.4.2. Room-Temperature Measurements: Estimation of Voc from PL Yield -- 7.4.3. Spatially Resolved Photoluminescence: Absorber Inhomogeneities -- References -- 8. Steady-State Photocarrier Crating Method / Rudolf Bruggemann -- 8.1. Introduction -- 8.2. Basic Analysis of SSPG and Photocurrent Response -- 8.2.1. Optical Model -- 8.2.2. Semiconductor Equations -- 8.2.3. Diffusion Length: Ritter-Zeldov-Weiser Analysis -- 8.2.3.1. Evaluation Schemes -- 8.2.4. More Detailed Analyses -- 8.2.4.1. Influence of the Dark Conductivity -- 8.2.4.2. Influence of Traps -- 8.2.4.3. Minority-Carrier and Majority-Carrier Mobility-Lifetime Products -- 8.3. Experimental Setup -- 8.4. Data Analysis -- 8.5. Results -- 8.5.1. Hydrogenated Amorphous Silicon -- 8.5.1.1. Temperature and Generation Rate Dependence -- 8.5.1.2. Surface Recombination -- 8.5.1.3. Electric-Field Influence -- 8.5.1.4. Fermi-Level Position -- 8.5.1.5. Defects and Light-Induced Degradation.
8.5.1.6. Thin-Film Characterization and Deposition Methods -- 8.5.2. Hydrogenated Amorphous Silicon Alloys -- 8.5.3. Hydrogenated Microcrystalline Silicon -- 8.5.4. Hydrogenated Microcrystalline Germanium -- 8.5.5. Other Thin-Film Semiconductors -- 8.6. Density-of-States Determination -- 8.7. Summary -- References -- 9. Time-of-Flight Analysis / Torsten Bronger -- 9.1. Introduction -- 9.2. Fundamentals of TOF Measurements -- 9.2.1. Anomalous Dispersion -- 9.2.2. Basic Electronic Properties of Thin-Film Semiconductors -- 9.3. Experimental Details -- 9.3.1. Accompanying Measurements -- 9.3.1.1. Capacitance -- 9.3.1.2. Collection -- 9.3.1.3. Built-in Field -- 9.3.2. Current Decay -- 9.3.3. Charge Transient -- 9.3.4. Possible Problems -- 9.3.4.1. Dielectric Relaxation -- 9.3.5. Inhomogeneous Field -- 9.4. Analysis of TOF Results -- 9.4.1. Multiple Trapping -- 9.4.1.1. Overview of the Processes -- 9.4.1.2. Energetic Distribution of Carriers -- 9.4.1.3. Time Dependence of Electrical Current -- 9.4.2. Spatial Charge Distribution -- 9.4.2.1. Temperature Dependence.
9.4.3. Density of States -- 9.4.3.1. Widths of Band Tails -- 9.4.3.2. Probing of Deep States -- References -- 10. Electron-Spin Resonance (ESR) in Hydrogenated Amorphous Silicon (a-Si: H) / Jan Behrends -- 10.1. Introduction -- 10.2. Basics of ESR -- 10.3. How to Measure ESR -- 10.3.1. ESR Setup and Measurement Procedure -- 10.3.2. Pulse ESR -- 10.3.3. Sample Preparation -- 10.4. The g Tensor and Hyperfine Interaction in Disordered Solids -- 10.4.1. Zeeman Energy and g Tensor -- 10.4.2. Hyperfine Interaction -- 10.4.3. Line-Broadening Mechanisms -- 10.5. Discussion of Selected Results -- 10.5.1. ESR on Undoped a-Si: H -- 10.5.2. LESR on Undoped a-Si: H -- 10.5.3. ESR on Doped a-Si: H -- 10.5.4. Light-Induced Degradation in a-Si: H -- 10.5.4.1. Excess Charge-Carrier Recombination and Weak Si-Si Bond Breaking -- 10.5.4.2. Si-H Bond Dissociation and Hydrogen Collision Model -- 10.5.4.3. Transformation of Existing Nonparamagnetic Charged Dangling-Bond Defects -- 10.6. Alternative ESR Detection -- 10.6.1. History of EDMR -- 10.6.2. EDMR on a-Si: H Solar Cells.
10.7. Concluding Remarks -- References -- 11. Scanning Probe Microscopy on Inorganic Thin Films for Solar Cells / Iris Visoly-Fisher -- 11.1. Introduction -- 11.2. Experimental Background -- 11.2.1. Atomic Force Microscopy -- 11.2.1.1. Contact Mode -- 11.2.1.2. Noncontact Mode -- 11.2.2. Conductive Atomic Force Microscopy -- 11.2.3. Scanning Capacitance Microscopy -- 11.2.4. Kelvin Probe Force Microscopy -- 11.2.5. Scanning Tunneling Microscopy -- 11.2.6. Issues of Sample Preparation -- 11.3. Selected Applications -- 11.3.1. Surface Homogeneity -- 11.3.2. Grain Boundaries -- 11.3.3. Cross-Sectional Studies -- 11.4. Summary -- References -- 12. Electron Microscopy on Thin Films for Solar Cells / Sebastian S. Schmidt -- 12.1. Introduction -- 12.2. Scanning Electron Microscopy -- 12.2.1. Imaging Techniques -- 12.2.2. Electron Backscatter Diffraction -- 12.2.3. Energy-Dispersive and Wavelength-Dispersive X-Ray Spectrometry -- 12.2.4. Electron-Beam-Induced Current Measurements -- 12.2.4.1. Electron-Beam Generation -- 12.2.4.2. Charge-Carrier Collection in a Solar Cell.
12.2.4.3. Experimental Setups -- 12.2.4.4. Critical Issues -- 12.2.5. Cathodoluminescence -- 12.2.5.1. Example: Spectrum Imaging of CdTe Thin Films -- 12.2.6. Scanning Probe and Scanning-Probe Microscopy Integrated Platform -- 12.2.7. Combination of Various Scanning Electron Microscopy Techniques -- 12.3. Transmission Electron Microscopy -- 12.3.1. Imaging Techniques -- 12.3.1.1. Bright-Field and Dark-Field Imaging in the Conventional Mode -- 12.3.1.2. High-Resolution Imaging in the Conventional Mode -- 12.3.1.3. Imaging in the Scanning Mode Using an Annular Dark-Field Detector -- 12.3.2. Electron Diffraction.
Note continued: 12.3.2.1. Selected-Area Electron Diffraction in the Conventional Mode -- 12.3.2.2. Convergent-Beam Electron Diffraction in the Scanning Mode -- 12.3.3. Electron Energy-Loss Spectrometry and Energy-Filtered Transmission Electron Microscopy -- 12.3.3.1. Scattering Theory -- 12.3.3.2. Experiment and Setup -- 12.3.3.3. The Energy-Loss Spectrum -- 12.3.3.4. Applications and Comparison with EDX Spectroscopy -- 12.3.4. Off-Axis and In-Line Electron Holography -- 12.4. Sample Preparation Techniques -- 12.4.1. Preparation for Scanning Electron Microscopy -- 12.4.2. Preparation for Transmission Electron Microscopy -- References -- 13. X-Ray and Neutron Diffraction on Materials for Thin-Film Solar Cells / Roland Mainz -- 13.1. Introduction -- 13.2. Diffraction of X-Rays and Neutron by Matter -- 13.3. Neutron Powder Diffraction of Absorber Materials for Thin-Film Solar Cells -- 13.3.1. Example: Investigation of Intrinsic Point Defects in Nonstoichiometric CuInSe2 by Neutron Diffraction.
13.4. Grazing Incidence X-Ray Diffraction (GIXRD) -- 13.5. Energy Dispersive X-Ray Diffraction (EDXRD) -- References -- 14. Raman Spectroscopy on Thin Films for Solar Cells / Alejandro Perez-Rodriguez -- 14.1. Introduction -- 14.2. Fundamentals of Raman Spectroscopy -- 14.3. Vibrational Modes in Crystalline Materials -- 14.4. Experimental Considerations -- 14.4.1. Laser Source -- 14.4.2. Light Collection and Focusing Optics -- 14.4.3. Spectroscopic Module -- 14.5. Characterization of Thin-Film Photovoltaic Materials -- 14.5.1. Identification of Crystalline Structures -- 14.5.2. Evaluation of Film Crystallinity -- 14.5.3. Chemical Analysis of Semiconducting Alloys -- 14.5.4. Nanocrystalline and Amorphous Materials -- 14.5.5. Evaluation of Stress -- 14.6. Conclusions -- References -- 15. Soft X-Ray and Electron Spectroscopy: A Unique "Tool Chest" to Characterize the Chemical and Electronic Properties of Surfaces and Interfaces / Clemens Heske -- 15.1. Introduction -- 15.2. Characterization Techniques -- 15.3. Probing the Chemical Surface Structure: Impact of Wet Chemical Treatments on Thin-Film Solar Cell Absorbers.
15.4. Probing the Electronic Surface and Interface Structure: Band Alignment in Thin-Film Solar Cells -- 15.5. Summary -- References -- 16. Elemental Distribution Profiling of Thin Films for Solar Cells / Raquel Caballero -- 16.1. Introduction -- 16.2. Glow Discharge-Optical Emission (GD-OES) and Glow Discharge-Mass Spectroscopy (GD-MS) -- 16.2.1. Principles -- 16.2.2. Instrumentation -- 16.2.2.1. Plasma Sources -- 16.2.2.2. Plasma Conditions -- 16.2.2.3. Detection of Optical Emission -- 16.2.2.4. Mass Spectroscopy -- 16.2.3. Quantification -- 16.2.3.1. Glow Discharge-Optical Emission Spectroscopy -- 16.2.3.2. Glow Discharge-Mass Spectroscopy -- 16.2.4. Applications -- 16.2.4.1. Glow Discharge-Optical Emission Spectroscopy -- 16.2.4.2. Glow Discharge-Mass Spectroscopy -- 16.3. Secondary Ion Mass Spectrometry (SIMS) -- 16.3.1. Principle of the Method -- 16.3.2. Data Analysis -- 16.3.3. Quantification -- 16.3.4. Applications for Solar Cells -- 16.4. Auger Electron Spectroscopy (AES) -- 16.4.1. Introduction -- 16.4.2. The Auger Process -- 16.4.3. Auger Electron Signals.
16.4.4. Instrumentation -- 16.4.5. Auger Electron Signal Intensities and Quantification -- 16.4.6. Quantification -- 16.4.7. Application -- 16.5. X-Ray Photoelectron Spectroscopy (XPS) -- 16.5.1. Theoretical Principles -- 16.5.2. Instrumentation -- 16.5.3. Application to Thin Film Solar Cells -- 16.6. Energy-Dispersive X-Ray Analysis on Fractured Cross Sections -- 16.6.1. Basics on Energy-Dispersive X-Ray Spectrometry in a Scanning Electron Microscope -- 16.6.2. Spatial Resolutions -- 16.6.3. Applications -- 16.6.3.1. Sample Preparation -- References -- 17. Hydrogen Effusion Experiments / Florian Einsele -- 17.1. Introduction -- 17.2. Experimental Setup -- 17.3. Data Analysis -- 17.3.1. Identification of Rate-Limiting Process -- 17.3.2. Analysis of Diffusing Hydrogen Species from Hydrogen Effusion Measurements -- 17.3.3. Analysis of H2 Surface Desorption -- 17.3.4. Analysis of Diffusion-Limited Effusion -- 17.3.5. Analysis of Effusion Spectra in Terms of Hydrogen Density of States -- 17.3.6. Analysis of Film Microstructure by Effusion of Implanted Rare Gases.
17.4. Discussion of Selected Results -- 17.4.1. Amorphous Silicon and Germanium Films -- 17.4.1.1. Material Density versus Annealing and Hydrogen Content -- 17.4.1.2. Effect of Doping on H Effusion -- 17.4.2. Amorphous Silicon Alloys: Si-C -- 17.4.3. Microcrystalline Silicon -- 17.4.4. Zinc Oxide Films -- 17.5. Comparison with Other Experiments -- 17.6. Concluding Remarks -- References -- pt. Four Materials and Device Modeling -- 18. Ab-Initio Modeling of Defects in Semiconductors / Johan Pohl -- 18.1. Introduction -- 18.2. Density Functional Theory and Methods -- 18.2.1. Basis Sets -- 18.2.2. Functionals for Exchange and Correlation -- 18.2.2.1. Local Approximations -- 18.2.2.2. Functionals Beyond LDA/GGA -- 18.3. Methods Beyond DFT -- 18.4. From Total Energies to Materials' Properties -- 18.5. Ab-initio Characterization of Point Defects -- 18.5.1. Thermodynamics of Point Defects -- 18.5.2. Formation Energies from Ab-Initio Calculations -- 18.5.3. Case study Point Defects in ZnO -- 18.6. Conclusions -- References -- 19. One-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells / Thomas Kirchartz.
19.1. Introduction -- 19.2. Fundamentals -- 19.3. Modeling Hydrogenated Amorphous and Microcrystalline Silicon -- 19.3.1. Density of States and Transport Hydrogenated Amorphous Silicon -- 19.3.2. Density of States and Transport Hydrogenated Microcrystalline Silicon -- 19.3.3. Modeling Recombination in a-Si: H and & mu;c-Si: H -- 19.3.3.1. Recombination Statistics for Single-Electron States: Shockley-Read-Hall Recombination -- 19.3.3.2. Recombination Statistics for Amphoteric States -- 19.3.4. Modeling Cu(In, Ga)Se2 Solar Cells -- 19.3.4.1. Graded Band-Gap Devices -- 19.3.4.2. Issues when Modeling Graded Band-Gap Devices -- 19.3.4.3. Example -- 19.3.5. Modeling of CdTe Solar Cells -- 19.3.5.1. Baseline -- 19.3.5.2. The & Phi;b -- NAc (Barrier-Doping) Trade-Off -- 19.3.5.3. C-V Analysis as an Interpretation Aid of I-V Curves -- 19.4. Optical Modeling of Thin Solar Cells -- 19.4.1. Coherent Modeling of Flat Interfaces -- 19.4.2. Modeling of Rough Interfaces -- 19.5. Tools -- 19.5.1. AFORS-HET -- 19.5.2. AMPS-1D -- 19.5.3. ASA -- 19.5.4. PC1D -- 19.5.5. SCAPS.
19.5.6. SC-SIMUL -- References -- 20. Two- and Three-Dimensional Electronic Modeling of Thin-Film Solar Cells / Wyatt K. Metzger -- 20.1. Introduction -- 20.2. Applications -- 20.3. Methods -- 20.3.1. Equivalent-Circuit Modeling -- 20.3.2. Solving Semiconductor Equations -- 20.4.2.1. Creating a Semiconductor Model -- 20.4. Examples -- 20.4.1. Equivalent-Circuit Modeling Examples -- 20.4.2. Semiconductor Modeling Examples -- 20.5. Summary -- References.
Print version record.
There are no comments on this title.