Welcome to Central Library, SUST
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Factors Governing Tin Whisker Growth [electronic resource] / by Erika R Crandall.

By: Contributor(s): Material type: TextTextSeries: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublisher: Cham : Springer International Publishing : Imprint: Springer, 2013Description: XII, 136 p. 92 illus., 65 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319004709
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.3815 23
LOC classification:
  • TK7867-7867.5
Online resources:
Contents:
Whiskers and Their Role in Component Reliability -- Film/Substrate Effects on Whisker Growth -- Environmental Effects of Whisker Growth -- Whisker Mitigation and Prevention -- Conclusions.
In: Springer eBooksSummary: Tin (Sn) whiskers are electrically conductive, single crystal eruptions that grow from Sn film surfaces. Their high aspect ratio presents reliability problems for the electronics industry due to bridging and metal arcing, leading to malfunctions and catastrophic failures in many electronic systems (including satellite and defense sectors). Due to legislation in the EU, Japan, and the U.S., mandating a gradual shift from lead (Pb)-based to lead-free solders and board finishes, there has been a reemergence of Sn whiskers. Continuing reports of Sn whisker induced failures coupled with the lack of an industry-accepted understanding of whisker growth and/or test methods to identify whisker prone products has made pure/high Sn substitutes a risky proposition in high reliability systems. This thesis is designed to clarify and control the fundamental mechanisms that govern whisker formation. The research focuses on reproducible "laboratory" created whiskers under a variety of rigorously controlled environmental factors such as film thickness, film stress, substrate material, gas environment, and humidity exposure, which are known to play a significant role in whisker production. The ultimate question of how to impede and/or prevent whisker growth is also addressed and shows that whisker prevention is possible via hard metal capping films, which are impenetrable by whiskers.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Whiskers and Their Role in Component Reliability -- Film/Substrate Effects on Whisker Growth -- Environmental Effects of Whisker Growth -- Whisker Mitigation and Prevention -- Conclusions.

Tin (Sn) whiskers are electrically conductive, single crystal eruptions that grow from Sn film surfaces. Their high aspect ratio presents reliability problems for the electronics industry due to bridging and metal arcing, leading to malfunctions and catastrophic failures in many electronic systems (including satellite and defense sectors). Due to legislation in the EU, Japan, and the U.S., mandating a gradual shift from lead (Pb)-based to lead-free solders and board finishes, there has been a reemergence of Sn whiskers. Continuing reports of Sn whisker induced failures coupled with the lack of an industry-accepted understanding of whisker growth and/or test methods to identify whisker prone products has made pure/high Sn substitutes a risky proposition in high reliability systems. This thesis is designed to clarify and control the fundamental mechanisms that govern whisker formation. The research focuses on reproducible "laboratory" created whiskers under a variety of rigorously controlled environmental factors such as film thickness, film stress, substrate material, gas environment, and humidity exposure, which are known to play a significant role in whisker production. The ultimate question of how to impede and/or prevent whisker growth is also addressed and shows that whisker prevention is possible via hard metal capping films, which are impenetrable by whiskers.

There are no comments on this title.

to post a comment.